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“Everything should be made as simple as possible, but not simpler.”
— Albert Einstein

1 Introduction
The most general relationship between variables 𝑥 and 𝑦 is a statistical one. Every data point
(𝑥, 𝑦) is generated by sampling from the joint distribution between 𝑥 and 𝑦, denoted by 𝑝(𝑥, 𝑦).
It is useful to write this relationship in terms of the distribution of 𝑦 conditioned on 𝑥, since
often we care about predicting 𝑦 given observations of 𝑥. We therefore write

(𝑥, 𝑦) ∼ 𝑝(𝑦|𝑥) 𝑝(𝑥) , (1.1)

where 𝑝(𝑥) is the marginal distribution of 𝑥. In general we want to learn 𝑝(𝑦|𝑥) from observed
data 𝒟 ≡ {(𝑥𝑖, 𝑦𝑖) : 𝑖 = 1, …, 𝑁}. However, we are often limited to learning the conditional
mean 𝔼[𝑦|𝑥] (as in the case of minimising an 𝐿2 loss), or median (as in the case of minimising
an 𝐿1 loss).

1.1 Linear model

The simplest model is a linear one that assumes 𝑦 depends linearly on the model parameters
𝛽. One example, for the univariate case is

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜀 , (1.1.1)

where 𝜀 is the residual, a random variable which captures the uncertainty in measurements of
𝑦. Another example is

𝑦 = 𝛽0 + 𝛽1𝑥2 + 𝜀 (1.1.2)

The only difference is that 𝑥 has been replaced with 𝑥2, which makes the model non-linear in
𝑥. However, since the model is still linear in 𝑦 and the model parameters 𝛽0, 𝛽1, this is still
considered a linear model. Linearity, in this context, means linear w.r.t 𝑦 and 𝛽.

Without loss of generality we take eq. (1.1.1) to be our model. Having chosen a model the next
obvious question is how we fit the model parameters (in this case 𝛽0 and 𝛽1) given some data?
A common approach is to do ordinary least squares (OLS) regression, where one quantifies the
performance of a set of parameters by the sum of squared differences between predictions and
observed values, 𝐿 = ∑𝑖 [𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖]

2.

It is certainly reasonable to consider this loss function, but why not the sum of absolute values
or sum of 4-th power residuals, or something else entirely? Does it even matter? It turns out it
does matter. Since it matters, it’s important to motivate this loss function to see what implicit
assumptions are being made. We will do this in the next section.

1.2 Deriving the least-squares loss

We start by specifying the conditional distribution 𝑓(𝑦|𝑥). Given 𝑥, the randomness in 𝑦 is
sourced by the residual 𝜀. If we assume 𝜀 ∼ 𝑁(0, 𝜎2) then for a single observation we get the
log-likelihood



−2 log ℒ(𝑦|𝑥, 𝛽) = 1
𝜎2 (𝑦 − 𝛽0 − 𝛽1𝑥)2 + constants . (1.2.1)

When we have 𝑁  data this becomes

−2 log ℒ(𝑦|𝑥, 𝛽) = 1
𝜎2 ∑

𝑁

𝑖=1
(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)

2 . (1.2.2)

On the lhs of eq. (1.2.2) 𝑦 represents the collection (𝑦1, 𝑦2, …, 𝑦𝑁), and similarly for 𝑥.

We can derive statistical estimators for 𝛽0 and 𝛽1 by finding the values where they maximise
the likelihood, or equivalently, minimise the negative log-likelihood. From eq. (1.2.2) we identify
that the loss given by the negative loss-likelihood is precisely the least-squares loss function.

In other words, assuming Gaussian residuals 𝜀𝑖 ∼ 𝑁(0, 𝜎2) leads to the least squares
loss.

1.3 Aside: what do we learn by minimising the least-squares loss function?

Suppose we have a flexible model 𝑓(𝑥; 𝜃) with parameters 𝜃 that we wish to train to predict 𝑦
given measurements of 𝑥. If we identify the best-fit parameters 𝜃∗ as those that minimise the
squared difference between our model and true values on our dataset 𝒟. That is, by minimising

𝐿[𝑓] = ∑
𝑖

[𝑦𝑖 − 𝑓(𝑥𝑖; 𝜃)]
2 , (1.3.1)

where I’ve written 𝐿[𝑓] to emphasize that the loss function can be interpreted as a functional
in terms of the model 𝑓 . In the limit of infinite data the sum over 𝑖 is just an average over the
joint distribution 𝑓(𝑥, 𝑦).

𝐿[𝑓] → ∬ [𝑦 − 𝑓(𝑥; 𝜃)]2𝑝(𝑥, 𝑦) d𝑥 d𝑦

= ∬ [𝑦 − 𝑓(𝑥; 𝜃)]2𝑝(𝑦|𝑥)𝑝(𝑥) d𝑥 d𝑦 (1.3.2)

Now we minimise 𝐿 by varing 𝑓 (we could equivalently varying 𝜃, but doing it this way is more
clean, and more fun). Setting 𝛿𝐿 = 0 yields

𝛿𝐿
𝛿𝑓

= ∫(𝑦 − 𝑓(𝑥; 𝜃)) 𝑝(𝑦|𝑥) 𝑝(𝑥) d𝑦 = (𝔼[𝑦|𝑥] − 𝑓(𝑥; 𝜃)) 𝑝(𝑥) = 0

⇒ 𝑓(𝑥; 𝜃∗) = 𝔼[𝑦|𝑥] . (1.3.3)

This is an important result. It tells us that even if we have infinite data and an arbitrarily
flexible model, the best we can do by minimising a least-squares loss is to learn the
conditional expectation of 𝑦 given 𝑥.

Note: A really nice reference for the content in this section is the introduction of ref. [1].



1.4 OLS estimators

The maximum likelihood estimator is obtained by taking the derivative of eq. (1.2.2) w.r.t. to
𝛽0 and 𝛽1, setting their results equal to zero, and solving for 𝛽0 and 𝛽1. The results are simply,

𝛽1 =
∑𝑖(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)

∑𝑖 (𝑥𝑖 − 𝑥)2 =
𝑆𝑥𝑦

𝑆𝑥𝑥
= 𝜌𝑥𝑦

𝑆𝑦𝑦

𝑆𝑥𝑥
, (1.4.1a)

𝛽0 = 𝑦 − 𝛽1𝑥 , (1.4.1b)

where I have introduced the estimators for standard error 𝑆 and correlation 𝜌,

𝑆2
𝑥𝑦 ≡ 1

𝑛 − 1
∑

𝑖
(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦) (1.4.2a)

𝜌𝑥𝑦 ≡
𝑆𝑥𝑦

𝑆𝑥𝑥𝑆𝑦𝑦
, (1.4.2b)

and overlines denote sample means, e.g. 𝑥 = 1
𝑁 ∑𝑁

𝑖=1 𝑥𝑖.

1.5 Properties of estimators

Unbiasedness
When conditioned on 𝑥 we can show the estimators are unbiased. In the following when I write
𝔼(𝑦) I mean the expectation of 𝑦 conditioned on 𝑥. Moreover, the expectation of any arbitrary
function of 𝑥 = (𝑥1, 𝑥2, …, 𝑥𝑁) is itself when conditioned on 𝑥.

𝔼𝛽1 =
∑𝑖(𝑥𝑖 − 𝑥)𝔼(𝑦𝑖 − 𝑦)

∑𝑖 (𝑥𝑖 − 𝑥)2 , (1.5.1)

but,

𝔼(𝑦𝑖 − 𝑦) = (𝛽0 + 𝛽1𝑥𝑖 − 𝛽0 − 𝛽1𝑥) = 𝛽1(𝑥𝑖 − 𝑥) . (1.5.2)

And so,

𝔼𝛽1 = 𝛽1 . (1.5.3)

Thus, for 𝛽0 = 𝑦 − 𝛽1𝑥 we have

𝔼𝛽0 = 𝔼𝑦 − 𝑥 𝔼𝛽1 = 𝛽0 + 𝛽1𝑥 − 𝑥𝛽1 = 𝛽0 . (1.5.4)

Variance

I’ll just state the results, because it is tedious.

Var(𝛽1) = 𝜎2

∑𝑖 (𝑥𝑖 − 𝑥)2 (1.5.5a)

Var(𝛽0) =
𝜎2 ∑𝑖 𝑥2

𝑖

𝑛 ∑𝑖 (𝑥𝑖 − 𝑥)2 (1.5.5b)

1.6 Signifcance testing



The linear correlation between 𝑥 and 𝑦 is typically assessed via the 𝑡-statistic,

�̂� = 𝛽1
�̂�/𝑆𝑥𝑥

, (1.6.1)

where �̂� is the estimator for the standard deviation of the residuals and is given by

�̂� = ∑
𝑖

(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)
2

. (1.6.2)

If the 𝜀𝑖 are assumed to (1) be Gaussian with mean zero (2) have no autocorrelation (3) exhibit
weak exogeneity, then the 𝑡-statistic follows a 𝑡 distribution which can be used to calculate
𝑝-values for significance testing. However, if any of these assumptions are violated you can’t
use the standard 𝑝-values. This happens basically all the time in financial time series analysis
where, for example, you may model the next time step 𝑦𝑡 as a linear combination of lagged
values. This introduces autocorrelation in the residuals. The Dickey-Fuller test takes this into
account when calculating 𝑝-values for the presence of a unit root.

1.7 Multiple regressors

Suppose we want to use 𝑝 covariates to predict the variate 𝑦. We can write down this model as

𝑦𝑖 = 𝛽0 + ∑
𝑝

𝑘=1
𝑥𝑘,𝑖𝛽𝑘 + 𝜀𝑘 for 𝑖 = 1, 2, …, 𝑁. (1.7.1)

Or, if we define 𝑋 ∈ ℝ𝑁×(𝑝+1) as the matrix

𝑋 ≡

(
((
((
((
(1

1
⋮
1

𝑥1,1
𝑥1,2

⋮
𝑥1,𝑁

𝑥2,1
𝑥2,2

⋮
𝑥2,𝑁

…
…
⋮
…

𝑥𝑁,1
𝑥𝑁,2

⋮
𝑥𝑁,2)

))
))
))
)

=
(
((
(|

1
|

|
𝑥1
|

|
𝑥2
|

|
…
|

|
𝑥𝑁
| )

))
) (1.7.2)

In this case the estimator for the regression parameters is

𝛽 = (𝑋𝑇 𝑋)−1𝑋𝑇 𝑦 . (1.7.3)

Its variance-covariance matrix is¹

Var(𝛽) = 𝜎2𝑋𝑇 𝑋 . (1.7.4)

1.8 Assumptions

Up until this point I haven’t gone into much detail about the assumptions we have made.
I’ve just blitzed through the derivation of the estimators. Here we enumerate the assumptions
and give them fancy names which I think were popularised by econometrics. Memorising the
assumptions is important because they are almost always violated. If they’re violated a little
then you’re probably fine proceeding as usual, but when they’re violated a lot we need to
introduce ways to fix things.

¹this can be easily derived by using the identity Var(𝐴𝑥) = 𝐴 Var(𝑥)𝐴𝑇 , and using the assumption of
homoscedasticity to write Var(𝜀) = 𝜎2𝟙𝑝+1.



Linear Regression Assumptions
1. Linearity: the model is linear in the variate and parameters.
2. Random sampling: the data (𝑥𝑖, 𝑦𝑖) are i.i.d., ensuring that the sample is represen-

tative of the population.
3. No perfect multicollinearity: the 𝑝 covariates are linearly independent. This imposes

Rank(𝑋) = 𝑝.
4. Weak exogeneity: no information loss in 𝑌  when conditioned on 𝑋, 𝔼[𝜀|𝑋] = 0.
5. Homoscedasticity the variance of errors is constant across all values of 𝑋.
6. No autocorrelation: errors are uncorrelated, 𝔼[𝜀𝑖, 𝜀𝑗] = 0 ∀ 𝑖 ≠ 𝑗..
7. Errors follow a distribution (optional): here we assumed Gaussian, but they

could’ve been 𝑡-distributed
8. Model specification: basically “the model is correct”. This assumption is often violated

if for example there are additional features which have not been included in the model.

1.9 Gauss Markov theorem

One of the most famous results is that the estimator eq. (1.7.3) is the best linear unbiased
estimator (BLUE), where best means lowest variance. The derivation is pretty straightforward
so I will present it here. First we define an arbitrary linear estimator of 𝛽 as an estimator of
the form

𝛽 = 𝐴𝑦 , (1.9.1)

where 𝐴 ∈ ℝ(𝑝+1)×𝑁 . If it’s unbiased then,

𝔼(𝛽) = 𝛽 . (1.9.2)

On the other hand substituting eq. (1.9.1) for 𝑦 and using the fact that 𝔼(𝜀) = 0 yields

𝔼(𝛽) = 𝐴𝔼(𝑋𝛽 + 𝜀) = 𝐴𝑋𝛽 . (1.9.3)

Combining eqs. (1.9.2) and (1.9.3) gives

𝐴𝑋𝛽 = 𝛽 ⇒ 𝐴𝑋 = 𝟙𝑝+1 . (1.9.4)

Eq. (1.9.4) motivates us to decompose 𝐴 as

𝐴 = (𝑋𝑇 𝑋)−1𝑋𝑇 + 𝐶 , (1.9.5)

where 𝐶 ∈ ℝ(𝑝+1)×𝑁  is in the null space of 𝑋, i.e., 𝐶𝑋 = 0. The first term can’t simply be 𝑋−1

since we need a matrix with the shape (𝑝 + 1) × 𝑁 , and 𝑋−1 would be 𝑁 × (𝑝 + 1).

The variance of 𝛽 can be written as

Var(𝛽) = Var(𝐴(𝑋𝛽 + 𝜀)) = Var(𝐴𝜀) = 𝐴 Var(𝜀)𝐴𝑇 (1.9.6a)

= [(𝑋𝑇 𝑋)−1𝑋𝑇 + 𝐶]𝜎2[(𝑋𝑇 𝑋)−1𝑋𝑇 + 𝐶]
𝑇

(using Var(𝜀) = 𝜎2) (1.9.6b)

= 𝜎2{(𝑋𝑇 𝑋)−1 + 𝑋𝑇 𝑋−1𝑋𝑇 𝐶𝑇 + 𝐶𝑋(𝑋𝑇 𝑋)−1 + 𝐶𝐶𝑇 } (1.9.6c)

= Var(𝛽) + 𝜎2𝐶𝐶𝑇 . (1.9.6d)



To go from eq. (1.9.6c) to eq. (1.9.6d) I eliminated the cross terms in the middle via the fact that
𝐶𝑋 = 0 and rewrote the first term using eq. (1.7.4). Since 𝐶 is a positive semi-definite matrix
we have shown that Var(𝛽) exceeds Var(𝛽) by a positive semi-definite matrix², 𝜎2𝐶𝐶𝑇 .

2 Consequences of violating Gauss Markov assumptions
2.1 Weak exogeneity

Some terms:

Definition 2.1.1 :  Exogeneity is the assumption that measurement errors are uncorre-
lated with the covariate 𝑥. In other words, Cov(𝑥, 𝜀) = 0. We often write 𝔼[𝜀|𝑥] = 0

Definition 2.1.2 :  Endogeneity refers to the errors in measurement of 𝑌  being correlated
with measurements of 𝑥.

In this section we consider the single-variable model in eq. (1.1.1). We have assumed that there
are no errors in our observations of the covariate 𝑥, but it’s possible there actually are errors.
If we naiively use the OLS estimator for 𝛽 how does the estimate relate to the true value?
Violation of weak exogeneity is sometimes referred to as errors-in-variables. In OLS regression
it leads to attenuation bias, where 𝛽 becomes biased towards 0.

First, let’s arrive at the effect using intuition. The OLS estimator for 𝛽 is 𝑆𝑥𝑦/𝑆𝑥. If there are
no errors in the measurement of 𝑥 then the only thing obscuring our ability to see the true
covariance between 𝑥 and 𝑦 are the errors in 𝑦 that we assume in OLS regression. Adding errors
to 𝑥 has the effect of reducing the observed covariance between 𝑥 and 𝑦, so we should expect
that if we use the OLS estimator in this case, our estimate would be biased towards zero than
the same estimator when used in the case when there are no errors in 𝑥.

Now some maths. Denote the true value of 𝑥 by 𝑥∗ and let the error in measurements of 𝑥∗ be
𝜂. The model is given by taking eq. (1.1.1) and replacing 𝑥 → 𝑥∗,

𝑦 = 𝛽0 + 𝑥∗𝛽1 + 𝜀 , (2.1.1)

but since we can only measure 𝑥 = 𝑥∗ + 𝜂 we have, in practice,

𝑦 = 𝛽0 + (𝑥 − 𝜂)𝛽1 + 𝜀
= 𝛽0 + 𝑥𝛽1 + (𝜀 − 𝛽1𝜂) (2.1.2a)
≡ 𝛽0 + 𝑥𝛽1 + 𝜀 , (2.1.2b)

where 𝜀 = 𝜀 − 𝛽1𝜂 is identified as the “new” residual, which is now correlated with 𝑥. The OLS
estimator for 𝛽1 then converges to

𝛽1 =
∑𝑖(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)

∑𝑖 (𝑥𝑖 − 𝑥)2 → Cov(𝑥, 𝑦)
Var(𝑥)

=
𝜎2

𝑥∗

𝜎2
𝑥∗

+ 𝜎2
𝜂

𝛽1, (2.1.3)

²To verify that 𝐶𝐶𝑇  is positive semi-definite simply write 𝑣 = 𝐶𝑇 𝑥, then for any 𝑥 |𝑣|2 = 𝑥𝑇 𝐶𝐶𝑇 𝑥 ≥ 0.



which is less than or equal to 𝛽1. This effect is called attenuation damping. In deriving this
expression I used the fact that we condition on the observed 𝑥 but are uncertain about the
true value 𝑥∗ and the noise 𝜂. We have,

Cov(𝑥, 𝑦) = Cov(𝑥∗ + 𝜂, 𝛽0 + 𝛽1𝑥∗ + 𝜀)
= Cov(𝑥∗, 𝛽1, 𝑥∗) + Cov(𝜂, 𝛽1𝑥∗) + Cov(𝜂, 𝜀)

= 𝛽1 Var(𝑥∗) + 0 + 0 ≡ 𝛽1𝜎2
𝑥∗

Note: The first time I encountered this I was very confused about the meaning of Cov(𝑥, 𝑦)
because I had the perspective that 𝑥 is not a random variable and 𝑦 is.

2.1 References
[1] C. M. Bishop, “Mixture density networks,” 1994.
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