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ABSTRACT

Cosmological and astrophysical probes of axionlike particles

by

Ray Mitchell Hagimoto

Axionlike particles (ALPs), pseudo Nambu-Goldstone bosons generated by the

spontaneous breaking of global U(1)PQ symmetries arise in solutions to open issues in

fundamental physics and are ubiquitous in string theory compactifications. ALPs have

a rich phenomenology which provides numerous ways to search for evidence of their

existence. This work explores two potential discovery channels for ALPs. The first

considers the possibility that hyperlight ALPs (ma ≲ 10−28 eV) with a Chern-Simons

coupling to electromagnetism formed a cosmic string network in the early Universe

that survives beyond recombination. In this scenario, CMB photons passing through

string loops in the network experience a rotation in their plane of polarization, an

effect known as CMB birefringence. Detecting CMB birefringence from ALP strings

may be in reach of future CMB probes. I use existing CMB birefringence power

spectrum data to constrain axion string network parameters. Next, I discuss non-

Gaussian features of axion string induced CMB birefringence maps. Finally, I explore

how one could use a neural network to estimate axion string network parameters

from CMB birefringence maps. The second potential discovery channel considers

how ALPs with lepton flavor violating couplings and masses ma ≲ 1MeV affect the

cooling rates of neutron stars. Through these studies, I develop tools that would assist

in identifying signatures of ALPs in cosmological and astrophysical observations.
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generate birefringence maps. The upper half of the figure depicts

CMB photons propagating through a network of strings modeled as

circular planar loops. The lower half depicts the birefringence angle

α(n̂) for photons along each line of sight n̂ as seen by an observer on

earth. Red/orange indicates a counter-clockwise rotation and blue

indicates a clockwise rotation. . . . . . . . . . . . . . . . . . . . . . 12

2.1 The types of string-wall networks seen by CMB photons travelling

from the surface of last-scattering to us. The possible types of

networks seen by CMB photons depend on two parameters: the

domain wall number Ndw and the mass of the axion ma. . . . . . . . 21



xii
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2.5 The expected birefringence signal due to a string network that

survives until today. We take A2ξ0 = 1 and ζ0 = 1. Left: A sample

sky map of the birefringence angle α(n̂). Right: The angular power
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2.6 Same as fig. 2.5 but for a collapsing string-wall network (Ndw = 1).
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2.8 Measurements of anisotropic cosmological birefringence with data

from various CMB telescopes: Planck (2018) (80) (see also ref. (81)),

Planck (2015) (82), ACTpol (83), SPTpol (84), BICEP2/Keck

Array (85), and Polarbear (86). Note the different scales for
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2.10 Joint posteriors for the collapsing string-wall network. Data and

contour shading is the same as fig. 2.9. . . . . . . . . . . . . . . . . . 50

2.11 Distribution over the monopole α00 of the birefringence map α(n̂). To

generate the gray histogram we simulate 1000 sky maps using the

loop crossing model with stable strings for parameters A = 1,

ξ0 = 0.5, A2ξ0 = 0.5, and ζ0 = 1. These parameters are chosen to

maximize the “Isotropic BF + SPTpol” distribution shown on

fig. 2.12. We approximate the simulated distribution by a normal

distribution (black-dashed curve) with zero mean and variance

Cαα
0 = (0.23◦)2 calculated from the model. The orange curve shows

the measurement of isotropic birefringence from ref. (73), which we

model as a normal distribution with mean
√
4π × (−0.342◦) = −1.21◦

and standard deviation
√
4π × (0.0925◦) = 0.328◦. . . . . . . . . . . . 51



xv

2.12 Assessing the compatibility of isotropic and anisotropic birefringence

measurements. We show the marginalized posterior over the

amplitude parameter A2ξ0 for the stable string network model. The

isotropic birefringence measurement favors a nonzero amplitude to fit

the monopole α00 (orange), whereas the anisotropic measurements

using SPTpol data constrain the amplitude around zero (blue). The

small overlap of the two distributions illustrates the difficulty in

accommodating both measurements from axion-defect-induced

birefringence. A joint likelihood combining both measurements (red)

favors A2ξ0 = 0.5± 1.0 at 68% CL. . . . . . . . . . . . . . . . . . . . 52

2.B.1A demonstration of how the statistical estimator α̂EB(n̂) from

eq. (2.17) reconstructs a birefringence map α(n̂). Left: The ‘true’

birefringence map α(n̂). Middle: The reconstructed birefringence

map α̂EB(n̂) obtained from a single realization of the CMB

temperature and polarization maps. Right: Reconstructed

birefringence map α̂EB(n̂), averaged over a suite of 10 realizations.

Our implementation of the estimator in this figure introduces a

multiplicative bias (not perceptible here) that scales inversely with

the map width. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
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Chapter 1

Introduction

1.1 Overview

This thesis explores the phenomenology of axionlike particles (ALPs) with a focus

on a phenomenological consequence of ALP field configurations featuring topological

defects known as cosmic strings. In chapter 1 (this chapter) I provide historical

background and motivation for the works shown in chapters 2-5. More precisely,

in sec. 1.2 I review the historical context for axions and ALPs, and in sec. 1.3 I

introduce string defects and an effect called cosmic birefringence.

In chapter 2 I use existing measurements of CMB birefringence power spectra

to constrain ALP-string parameters in a phenomenological model called the loop-

crossing model (LCM). In chapter 3 I study the non-Gaussian signatures of LCM

birefringence maps via their kurtosis and bispectrum. In chapter 4 I explore how

neural networks can estimate LCM parameters from CMB birefringence maps. Fi-

nally, in chapter 5, I consider ALPs with lepton-flavour violating (LFV) couplings

produced in neutron stars and use neutron star cooling data to put bounds on the

LFV coupling strength.

1.2 Axions and axionlike particles

In this section I will provide historical context and motivation for the study of axions

and axionlike particles. The Standard Model (SM) of particle physics is one of, if

not, the most successful accomplishments in humanity’s attempt to understand the

fundamental laws of nature. The most striking example of the SM’s success is its
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prediction of the electron’s anomalous magnetic moment, which has been verified to

a staggering 12 significant figures (1) – a monumental agreement between theory and

experiment. In spite of its successes, there are several areas in which the SM is limited.

For example, the SM fails to explain the origin of neutrino masses (2), the nature

of dark matter and dark energy (3), and the observed lack of Charge-Parity (CP)

violation in the strong sector (4). The problem that is most relevant in the context

of axions is the latter, known as “the strong CP problem”, which will be explored in

more detail below.

1.2.1 The Strong CP problem and the axion

The strong force is fundamentally described by the theory of quantum chromodynam-

ics (QCD). The symmetries of the SM permit the inclusion of a CP-violating term in

the QCD Lagrangian. It has the form (5)

L ⊃ θQCD

32π2
Ga

µνG̃
a,µν , (1.1)

where Gµν is the gluon field strength tensor, G̃µν = ϵµναβGαβ/2 is its dual, and

the latin index a runs over the 8 generators of the QCD gauge group SU(3)c. One

implication of (1.1) is that it generates a electric dipole moment (EDM) for the

neutron with a magnitude directly proportional to θQCD given by (6),

dn =
gπNNgπNN ln (MN/mπ)

4π2MN

≈ 3.6× 10−16 θQCD e cm . (1.2)

The latest experimental measurements of the neutron’s EDM constrain dn < 1.8 ×
10−26 e cm at 90% confidence level (7). In conjunction with eq. (1.2) this imposes a

limit of θQCD ≲ 10−10, which is staggeringly small. There is no theoretical reason why

the term in eq. (1.1) should be omitted, or why it should have such a small value,

which hints that there may physics beyond the SM at play.
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1.2.2 The Axion Solution

One of the most compelling solutions to the strong CP problem is to promote θQCD

from a parameter of the model to a dynamical CP-conserving field θQCD → ϕ(x)

in such a way that ϕ settles to 0 via its equations of motion. This idea was first

introduced by Roberto Peccei and Helen Quinn in 1977 (8) and is known as the Peccei-

Quinn (PQ) mechanism. While there are many variations on the PQ mechanism the

basic ingredients are as follows (5). A new complex scalar field φ is added to the

theory such that the full theory has a global U(1)PQ symmetry. The φ field has a

potential

V (φ) = λ

(
|φ|2 − f 2

a

2

)2

, (1.3)

where fa is the axion decay constant, also known as the PQ scale. Moreover, φ couples

to fermions in the theory via Yukawa terms. For energies below the PQ scale the

ground state of the theory spontaneously breaks the global U(1)PQ symmetry, giving

masses to the fermions it is coupled to. The resultant (pseudo) Nambu-Goldstone

boson ϕ is the angular degree of freedom of φ. The “pseudo-ness” of ϕ arises from

instanton effects which generate a mass term for ϕ that explicitly breaks the PQ

symmetry. In addition to generating the axion mass, instanton effects have two

important consequences. The first is that they induce a “Chern-Simons” coupling

between axions and gluons, adding the topological term

(Cϕ/fa)GG̃ (1.4)

to the Lagrangian, where C is the quantum anomaly coefficient (see e.g. ref. (9)).

Note that eq. (1.4) is of the same form as eq. (1.1) so there is now an effective term

(θQCD + Cϕ/fa)GG̃. But since the axion has a shift symmetry ϕ → ϕ + const, the

constant θQCD can be absorbed into the definition of ϕ. This accomplishes the goal

of replacing θQCD with the dynamical field ϕ. The second important role played by



4

instantons is they generate a potential for the axion field of the form

V (ϕ) ∝ 1− cos(Cϕ/fa) . (1.5)

The equations of motion cause the axion to dynamically settle to a value which

minimizes its potential energy eq. (1.5), which implies ϕ → 0. Hence the CP violating

term vanishes and the strong CP problem is resolved.

1.2.3 Axionlike particles

In sec. 1.2 we introduced axions in the context of solving the strong CP problem.

However, pseudoscalar fields with axion-like properties, known as axionlike particles

(ALPs), arise naturally in other areas. Most notably, string theory compactifications

of extra dimensions give rise to ALPs as Kaluza-Klein zero modes of antisymmetric

tensor fields (10). In many compactifications there are a plethora of ALPs – hundreds,

even hundreds of thousands – with masses populating many decades of energy scales

down to the present Hubble scale H0 ∼ 10−33 eV (11). See ref. (12) for an example in

type IIB string theory. Throughout this thesis I will be primarily interested in ALPs

with masses in the range ∗ 10−33 eV ma ≲ 10−28 eV.

Another general property of string theory ALPs is that they have Chern-Simons

couplings to gauge fields. In my discussion of the PQ solution to the strong CP

problem (sec. 1.2.1) instanton effects generated a coupling between axions and gluons

as in eq. (1.4). However, it is also possible for axions to couple to photons in an

analogous way as (9; 11; 15)

Lϕγγ =
Aαem

4πfa
ϕFµνF̃

µν , (1.6)

∗Note that ALPs with masses less than 10−19 eV are excluded from being a dominant component

of the dark matter from observations of small-scale structures (13; 14). Therefore, the ALPs we

consider in chapters 2-4 can not dominate the dark matter content.
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where Fµν is the electromagnetic field strength tensor, F̃ µν = ϵµναβFαβ/2 is its dual,

αem ≈ 1/137 is the fine structure constant, and A is the electromagnetic anomaly co-

efficient. The axion-photon coupling in eq. (1.6) will play a central role in chapters 2,

3, and 4.

1.3 Cosmic axion strings and CMB birefringence

In this section I introduce one-dimensional topological defects called called strings. I

briefly review how networks of strings can form in the ALP field in the early Universe

via the Kibble mechanism and explore how ALP strings rather than particles provide

a fascinating way to probe high energy physics through the topological ALP-photon

interaction eq. (1.6). The review here will be brief, for more details the reader is

directed to refs. (16; 17).

1.3.1 String defects

The potential for the complex scalar φ introduced in eq. (1.3) has an interesting

consequence for certain field configurations wherein the angular field ϕ/fa ≡ argφ

(the axion) wraps around the circular minima at least once on a closed path in physical

space. An example of such a solution is illustrated in fig. 1.1 where the colored plane

shows the axion field wrapping around from ϕ = 0 to ϕ = 2πfa. At the center of the

plane is a ‘vortex’, a single point where ϕ must apparently wrap around from 0 to

2πfa in order for the field to be smooth. Since this isn’t possible ϕ is not well defined

at that point. Instead, what must happen is that the radial component of φ goes to

0 at the vortex’s center. This costs energy as it requires φ to climb up the potential’s

hill as seen in fig. 1.2.

Immediately next to this vortex must be another vortex where the field winds

around in the same direction but possibly in a slightly different plane. By following

the centers of the vortices one can trace out a one-dimensional structure in space

called a string. This is depicted in fig. 1.1 by a black curve. Cosmic strings are
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Figure 1.1 : Illustration of a string solution for ϕ(x, y, z) in physical space. The string

core is represented by a black curve. A colored plane intersecting the string depicts

the value of the axion field ϕ in the region around the string core. The axion winds

from ϕ = 0 on the x-axis to ϕ = 2πfa for closed paths going counter-clockwise.

strings that form from cosmological phase transitions, a mechanism I review briefly

in sec. 1.3.2.

Figure 1.2 : Plot of the potential eq. (1.3) in field space. The field is parameterized

by its real and imaginary components, Re(φ) and Im(φ), with the potential V (φ) =

λ
(
|φ|2 − f 2

a/2
)2. The value of the axion field in the minimum of the potential is

depicted as a colored circle.
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1.3.2 The Kibble mechanism and cosmic string formation

In this section I provide an overview of how cosmic strings form from cosmological

phase transitions. A mechanism for the formation of topological defect networks due

to cosmological phase transitions was first introduced in ref. (16) and it is known as

the Kibble mechanism. My discussion is largely based on the presentation in ref. (17).

In short, due to the Universe’s expansion and state of thermal equilibrium, the po-

tential eq. (1.3) has a temperature dependence. Above a critical temperature Tc the

ground state of the theory is symmetric but below Tc it spontaneously breaks the

global U(1)PQ symmetry. Hence, in a Universe with an initial temperature above Tc,

crossing below Tc results in a second order phase transition which can give rise to

a network of topological defects such as strings. Below, I discuss the temperature-

dependent potential in more detail and provide a simple example.

Observations of the CMB provide compelling evidence that the early Universe was

in thermal equilibrium (18). We must therefore consider the effect that the presence

of a thermal background has on potentials like eq. (1.3). The effective potential for

weakly interacting fields at high temperature was derived perturbatively in (19–22),

with the lowest order corrections being of the form

Veff(φ) = V (φ)−N π2

90
T 4 +

1

24
M2(φ)T 2 +O(T ) , (1.7)

where V (φ) is the zero-temperature potential eq. (1.3), N controls the number of

particles species, and M2(φ) is related to the particle masses and is a function of φ

since some of the masses are generated by the scalar φ. Importantly, in many models

M2(φ) contains a quadratic term. The significance of a quadratic term is that it

shifts the position of the minima of V (φ). To see this, we can expand eq. (1.3) to

obtain

V (φ) = −λf 2
a |φ|2 + λ |φ|4 + constants . (1.8)

If one added a term of the form c(T ) |φ|2 to this expression where c(T ) is a temperature-

dependent coefficient, then for c(T ) > λf 2
a the coefficient of the |φ|2 term becomes
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positive and the ‘hilltop’ shape goes away. As a concrete example, consider the Gold-

stone model

L = (∂µφ)
†(∂µφ)− V (φ) , (1.9)

where V (φ) is given by eq. (1.3). In this model M2(φ) is given by (17)

M2(φ) = 8λ |φ|2 , (1.10)

so the effective potential, according to eq. (1.7) is,

Veff(φ, T ) =
λ

3

(
T 2 − 3f 2

a

)
|φ|2 + λ|φ|4 , (1.11)

where we have dropped φ-independent terms. Above a temperature Tc =
√
3f 2

a

the minimum of Veff is at φ = 0 and there is no spontaneous symmetry breaking.

In a hot big bang-like scenario this would imply symmetry restoration at higher

temperatures. Then, as the Universe expands and T drops below Tc the symmetric

state φ = 0 becomes unstable and the radial mode will incur a nonzero value |φ| ≠ 0.

On the other hand, in this picture there is no preferred direction for the angular mode

ϕ. Thus, different causally disconnected regions of physical space will pick different

values of ϕ at random. Necessarily, there will be regions of space where vortices form

by chance, giving rise to a network of strings.

1.3.3 Birefringence from strings

In this section I discuss how cosmic axion strings can rotate the plane of polarization

of light, an effect known as birefringence. Theories with a Chern-Simons term given

by eq. (1.6) couple axions and photons, resulting in modified equations of electro-

dynamics. One of the consequences of this interaction is that if a linearly polarized

electromagnetic wave propagates through a region of space with an inhomogeneous

axion field it experiences a rotation of its plane of polarization by an amount (23–26),

∆α =
Aαem

2πfa

∫

C

∂µϕ dX
µ (1.12)
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where the integral is performed over the photon’s worldline C. If the axion has a

trivial topology then the integral in eq. (1.12) is simply the difference between the

value of ϕ at the start and end points of C so that we have ∆α = Aαem ∆ϕ/2πfa.

If there are strings, the axion field winds around from 0 to 2πfa in closed paths

around a single string core. Ref. (27) showed that for photons propagating along an

infinitely long path through the center of a circular planar string loop the birefringence

angle is

∆α = ±Aαem , (1.13)

which is independent of fa. Meanwhile, for photons that do not pass through the

interior of a string loop, the incurred birefringence angle is 0. Fig. 1.3a illustrates

this effect. A linearly polarized electromagnetic wave (photon) whose electric field is

depicted as an orange sinusoid (the magnetic field is not shown for visual clarity).

The photon propagates from left to right along an axis perpendicular to the plane of

a circular planar string loop (black circle). The loop’s clockwise winding number is

illustrated with two arrowheads. As the photon propagates its plane of polarization is

rotated by an amount dictated by the gradient of the axion field along its trajectory

in accordance with eq. (1.12).

To help illustrate why the birefringence is accumulated only for photons passing

through the interior of the loop fig. 1.3b shows a 2D cross-section of the planar loop

and the gradient of ϕ as seen in that plane. To calculate ∇ϕ the string loop was

approximated as two infinitely long strings with opposite winding numbers. The

trajectory of the photon shown in fig. 1.3a is shown as a orange arrow labeled B.

Since the ∇ϕ points along the direction of the photon’s trajectory, the line integral

along this path is nonzero and the photon experiences a rotation in its plane of

polarization. On the other hand, a photon passing outside the loop exemplified by

path A (purple arrow) experiences no net rotation since contributions to the integral

of ∇ϕ along this path cancel each other out.

For a string network that survives beyond recombination, linearly polarized CMB
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(a) Illustration of birefringence experienced by an electromagnetic wave (orange) propagating

through the center of a string loop (black circle). The string’s winding orientation is depicted

by black arrowheads. Electromagnetic waves that do not cross a string loop experience no

rotation (purple).

x

y

A

B

(b) Illustration of ∇ϕ for an axion field in the xy-plane of fig. 1.3a. Blue and red dots

depict where the string loop crosses the plane and are consistent with the blue and red dots

of fig. 1.3a. Arrows depicting the vector field are normalized to be the same length. Grey

arrows have a smaller magnitude whereas orange and yellow arrows have a larger magnitude.

The purple (orange) arrow labeled A (B) depicts an example of a photon trajectories passing

outside (inside) the loop. The line integral along A is 0, so the photon experiences no

birefringence. The line integral along B is nonzero since ∇ϕ is always pointing in the same

direction as B, so there is a nonzero birefringence.
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photons will propagate through the string network and experience a net birefringence

equal to the sum of the birefringence from each string loop. From the perspective

of an observer this means that a photon hitting a detector along the line of sight

n̂ will have a birefringence angle of α(n̂) ≈ ∑
loops crossed±Aαem. Fig. 1.4 illustrates

how CMB photons accumulate birefringence when propagating through a network of

strings. The upper half of fig. 1.4 depicts strings as circular planar loops, drawn on

orange shells that represent snapshots in time progressing from the past (right) to the

present (left). Each time a photon crosses a loop its plane of polarization is rotated

by ±Aαem. In the lower half of fig. 1.4 the accumulated birefringence angle in each

direction n̂ up to the indicated redshift z is shown in a Mollweide projection.

The possibility that ALP-strings may have left an imprint in CMB birefringence

maps is intriguing because measuring birefringence is a science driver for current and

future CMB probes (28–30). To date, studies analyzing CMB polarization measure-

ments claim a nonzero isotropic birefringence angle of 0.342+0.094◦
−0.091◦ (31), whereas exper-

imental efforts to measure the anisotropic component are consistent with zero (32–37).

Future CMB probes are expected to improve on these measurements by orders of mag-

nitude (29; 38; 39), and may therefore be sensitive enough to detect the anisotropic

component. Through chapters (2-4) I obtain constraints of axion string network

parameters from existing data, study the non-Gaussian signatures of axion-string

induced birefringence maps, and show how neural networks can be used to extract

axion-string parameters from CMB birefringence maps.

1.3.4 Axion-matter coupling

In sec. 1.3.3 I discussed how the axion-photon interaction term eq. (1.6) could im-

print an observable signature on CMB radiation. Another possibly observable effect

can occur if axions couple to matter. In particular, we consider an interaction that

violates lepton flavour conservation, allowing for processes that, for example, permit
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Figure 1.4 : Graphical illustration of the loop-crossing model, which we use to

generate birefringence maps. The upper half of the figure depicts CMB photons

propagating through a network of strings modeled as circular planar loops. The

lower half depicts the birefringence angle α(n̂) for photons along each line of sight n̂

as seen by an observer on earth. Red/orange indicates a counter-clockwise rotation

and blue indicates a clockwise rotation.

the conversion of a muon to an electron through the emission of an axion:

LLFV =
gϕeµ

me +mµ

Ψeγ
ργ5Ψµ ∂ρϕ + h.c. . (1.14)

In the environment of a neutron star the interaction eq. (1.14) would give rise to

additional energy loss channels (via axion emission), which modify the neutron star’s

cooling rate.

There are multiple reasons why one would consider lepton flavour violating (LFV)

interactions like eq. (1.14). For one, there is no reason to expect the full UV theory of
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the SM + ALP to conserve lepton flavour since we already know that lepton flavour

conservation is an accidental symmetry of the SM, which is broken by the fact that

neutrinos are massive. Moreover, even if the UV theory does conserve lepton flavour,

LFV effects can arise from radiative corrections (40–43).

In chapter 5, axion emissivity from neutron stars through the LFV interaction

given in eq. (1.14) is computed and used to derive a limit on the coupling constant

gϕeµ.
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Chapter 2

Searching for axion-like particles through CMB
birefringence from string-wall networks

Abstract

Axion-like particles (ALPs) can form a network of cosmic strings and domain walls

that survives after recombination and leads to anisotropic birefringence of the cosmic

microwave background (CMB). In addition to studying cosmic strings, we clarify and

emphasize how the formation of ALP-field domain walls impacts the cosmic birefrin-

gence signal; these observations provide a unique way of probing ALPs with masses in

the range 3H0 ≲ ma ≲ 3Hcmb. Using measurements of CMB birefringence from sev-

eral telescopes, we find no evidence for axion-defect-induced anisotropic birefringence

of the CMB. We extract constraints on the model parameters that include the ALP

mass ma, ALP-photon coupling A ∝ gaγγfa, the domain wall number Ndw, and pa-

rameters characterizing the abundance and size of defects in the string-wall network.

Considering also recent evidence for isotropic CMB birefringence, we find it difficult

to accommodate this with the non-detection of anisotropic birefringence under the

assumption that the signal is generated by an ALP defect network.

Notes about this project: This chapter is from a paper I wrote with Mustafa

A. Amin (MA), Andrew J. Long (AL), and Mudit Jain (MJ) that was published in

the Journal of Cosmology and Astroparticle Physics in 2022 (1). It is a continuation

of earlier work by MA, AL, and MJ who studied anisotropic CMB birefringence

from hyperlight (ma ≲ 10−28 eV axion string networks (2). Ref. (2) introduced a

phenomenological model for birefringence all-sky maps from axion strings referred to

as the “loop-crossing model” (LCM) and computed the birefringence power spectrum
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analytically. A natural next step was to take the predicted birefringence power spectra

and compare them with existing birefringence power spectra measurements to see

what axion-string parameters are consistent with observations.

I officially joined the group in April 2021 and developed a Python code to perform

LCM simulations which enabled us to visualise birefringence maps and provide further

validation of the analytical results of ref. (2). Then I developed a framework for doing

Bayesian inference on LCM parameters which was used to produce the main results

in this paper.

2.1 Introduction

Exquisite measurements of cosmic microwave background (CMB) temperature and

polarization anisotropies carried out over the past few decades have revolutionized our

understanding of cosmology. The absence of B-mode polarization on large angular

scales in the CMB has already provided important insights about cosmological initial

conditions (3). Building on these measurements, more subtle analyses of achromatic

CMB polarization rotation (“CMB birefringence”), has been a focus of a growing

number of recent studies.

CMB birefringence provides an exciting window into physics beyond the Standard

Model. For example, hypothetical axion-like particles (ALPs) coupled to photons in

the following manner

Lint = −1

4
gaγγ aFµνF̃

µν (2.1)

can induce a birefringence signal. A photon propagating through a classical ALP

field a(x) is expected to experience a frequency-independent birefringence (4–7) as its

plane of polarization is rotated by an angle

α = −gaγγ
2

∫

C

dXµ ∂µa(X) . (2.2)

The integral runs over the photon’s worldline Xµ from the point of emission to de-

tection. Isotropic birefringence has been studied in the context of an approximately
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homogeneous ALP field that may constitute the dark matter or dark energy (8–12),

yielding information about the ALP-photon coupling (gaγγ) and the mass of the ALP

(ma).

ALPs may also form a network of topological defects in the Universe, and leave

a distinctive imprint on the CMB polarization via cosmological birefringence (2; 13–

16). Such a defect network of strings and walls in the ALP field can exist after

recombination, depending on the value of ma, the number of degenerate vacua Ndw,

and the symmetry breaking scale fa. Even if the defect network is subdominant in

energy density, it can lead to a potentially detectable, anisotropic, and frequency-

independent birefringence signal, which depends on ma, Ndw, and the anomaly coef-

ficient A ∝ gaγγfa.

Getting a handle on ma, Ndw, fa, and A would be invaluable from a high energy

physics point of view. For example, a global shift symmetry in the axion field would

require a vanishing ALP mass ma = 0, whereas a nonzero mass would signal that

this symmetry is broken. The general expectation is that all global symmetries are

explicitly broken due to quantum gravitational effects in string theory (17–21). On

the other hand, some alternative constructions of quantum gravity such as asymptotic

safe gravity, may allow global symmetries to be preserved (22). Therefore, probing the

mass of ALPs and the vacuum structure of their effective potential would constitute a

test of the underlying nature of quantum gravity (23). Birefringence from the defect

network probes new physics at the scale fa since the charges of particles at this scale

determine the anomaly coefficient A. Even if fa ≫ TeV and these particles cannot

be probed directly at colliders, measurements of CMB birefringence could provide

valuable insight into new high energy physics.

For most of this work, we focus on exceptionally light ALPs, with masses that

are comparable to the Hubble parameter between recombination and today (though

much higher and lower masses are also discussed). This regime is relevant for the types

of string-wall networks that can be present after recombination (see fig. 2.1). Such



21

do
m

ai
n 

wa
ll 

nu
m

be
r 
N

dw

axion mass ma

1

2

3 string network

string   string-wall network

no network (no-birefringence)string network   collapse

string network

string network

string   string-wall network string-wall network

string-wall network
… … …

⇠ 3H0 ⇠ 3Hcmb

Figure 2.1 : The types of string-wall networks seen by CMB photons travelling from

the surface of last-scattering to us. The possible types of networks seen by CMB

photons depend on two parameters: the domain wall number Ndw and the mass of

the axion ma.

light masses arise naturally in many string theory constructions via non-perturbative

effects (24–29).

The birefringence signature of an ALP defect network was first studied in ref. (13).

Building on that work, some of us developed semi-analytic models to calculate the

expected power spectrum of axion-defect-induced birefringence for different ranges of

ALP masses and network dynamics (2). Recently, ref. (15) used Planck (2015) data

to investigate some of these models (particularly those with stable string networks,

orange blocks in fig. 2.1) and derive constraints on their parameters. Taking advantage

of these prior studies, our goals for the present paper are as follows:

• Provide the first constraints on collapsing ALP string-wall networks imposed

by measurements of anisotropic birefringence from CMB data.

• Clarify the role played by walls in string-wall networks in the context of bire-
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fringence.

• Test for axion-defect-induced birefringence using measurements of anisotropic

birefringence derived from data taken by various telescopes: Planck, ACTpol,

SPTpol, BICEP2/Keck Array, and Polarbear.

• Validate the results of our earlier semi-analytic work on anisotropic birefrin-

gence (2) by ray-tracing through statistical ensembles of defect networks and

calculating the corresponding birefringence maps and power spectra.

• Assess the compatibility of recent measurements of isotropic birefringence with

limits on anisotropic birefringence assuming the source is an axion string-wall

network.

In contrast with ref. (15), we also investigate scenarios with ma ≳ 3H0 in this paper.

Since walls form when ma ∼ 3H, this necessitates including effects due to collapsing

string-wall networks or stable string-wall networks (blue, purple and green regions in

fig. 2.1). We find this higher mass window particularly intriguing since the associated

phenomenology has the potential to provide a measurement of ma in the Ndw = 1

case. By contrast, astrophysical observations such as probes of exotic stellar emission,

are sensitive to arbitrarily light ALPs, but such observations cannot constrain their

masses.

The structure of the paper is as follows. In sec. 2.2 we review the loop-crossing

model and discuss how each of the different string-wall network models are described

by this framework. In sec. 2.3 we briefly summarize the current status of CMB

birefringence measurements. In sec. 2.4 we report on the main results of our work: the

non-observation of birefringence implies constraints on a hyperlight axion-like particle.

In sec. 2.5 we discuss the implications of the measurements of isotropic birefringence

for our models and analysis. Finally, we summarize and conclude in sec. 4.6. The

article is extended by three appendices. App. 2.A contains a detailed outline of the

procedure that we have used to simulate birefringence sky maps. App. 2.B presents
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Ndw = 1

Ndw = 2

ma < 3H ma > 3H

Figure 2.2 : An illustration of the axion string-wall network dynamics – black lines

represent strings and colored regions represent walls. Top row: For Ndw = 1, the

string network survives from formation until ma ≃ 3H(t). Thereafter, field gradients

in the space between strings realign to form domain walls, which pull on the strings

causing the network to collapse in a few Hubble times. Bottom row: For Ndw = 2,

each string attaches to two domain walls, and the balance of forces from different

walls prevents collapse and allows the network to survive after ma ≃ 3H.

a statistical estimator that is often used to extract birefringence measurements from

CMB polarization data. Finally, app. 2.C reports on searches for axion-defect-induced

birefringence in additional data sets.
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2.2 CMB birefringence from an axion string-wall network

The ALP field can form a topological defect network consisting of cosmic strings and

domain walls (30; 31).∗ In the early Universe, if the ALP field’s global symmetry

is broken after inflation, then the associated phase transition fills the Universe with

a network of cosmic strings (33; 34). The string network exhibits rich dynamics,

such as the oscillation of curved string segments under the influence of their own

tension, the formation of string loops from the crossing and reconnection of string

segments, and the evaporation of string loops by the emission of ALPs (35–38). If

the Hubble parameter drops below the axion mass scale, 3H(t) ≃ ma, the ALP field

in the space between strings is released from Hubble drag, and the strings become

bounded by domain walls; see fig. 2.2 for an illustration. The number Ndw of domain

walls attached to each string is a parameter of the theory, associated with explicit

symmetry breaking. For models with Ndw = 1 the string-wall network collapses into

a bath of ALPs within a few Hubble times, but for Ndw ≥ 2 the network is stable due

to the balance of forces.

To assess the implications of an ALP string-wall network for CMB birefringence, it

is useful to break up the parameter subspace (ma, Ndw) into four regions as illustrated

in fig. 2.1. For ma ≲ 3H0, the domain walls have not yet formed by today, which

makes Ndw irrelevant, and the birefringence signal arises from axion strings alone.

For 3H0 ≲ ma ≲ 3Hcmb and Ndw = 1, the domain walls form and cause the network

to collapse between recombination and today. This shuts off the accumulation of

birefringence at the time when 3H(t) ≃ ma. For 3H0 ≲ ma ≲ 3Hcmb and Ndw ≥ 2,

the formation of domain walls converts the string network into a stable string-wall

network between recombination and today, whereas for 3Hcmb ≲ ma and Ndw ≥ 2,

this conversion occurs before recombination.

When coupled to electromagnetism (2.1), ALP strings and walls induce a frequency-

independent birefringence signal. This signal is insensitive to the symmetry breaking

∗See ref. (32) for an explicit discussion of cosmic strings arising in the String-Axiverse.
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Figure 2.3 : An illustration of axion-defect-induced birefringence. Left: A photon’s

plane of polarization rotates gradually as it approaches and passes through a string

loop without domain walls. Right: For a string loop bounded by two domain walls,

the polarization axis rotates ‘abruptly’ upon crossing each wall. In both scenarios,

with and without domain walls, the net effect is the same rotation angle α = ±Aαem.

scale fa but directly probes the anomaly coefficient A = −πfagaγγ/αem (13). For

instance, if walls have not yet formed, then a photon crossing through a string loop

‘sees’ the axion field pass through a full cycle ∆a =
∫
C
dXµ ∂µa(X) → ±2πfa, and

the resultant birefringence angle (2.2) is α → ±Aαem. The ± factor is the string’s

winding number,† and the arrow indicates the limiting value as the end points of C

are taken far away from the loop; see fig. 2.3 for an illustration. If domain walls are

present in the network, the birefringence effect is α = ±Aαem/Ndw at each wall cross-

ing, since the axion field changes “abruptly” by ∆a = ±2πfa/Ndw. However, since

each string connects to Ndw walls, the net effect is insensitive to Ndw; we discuss this

point further in sec. 2.2.3.

To calculate the birefringence signal from an axion string-wall network, we em-

ploy the ‘loop crossing model’ developed in refs. (2; 13). The loop crossing model

†Although strings can have winding numbers ±1,±2, ..., only the ±1 strings are the most stable.

Throughout our work, we only consider +1 or −1 winding numbers.
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captures features of the network’s rich structure and dynamics that are particularly

relevant for birefringence. In this framework the network is treated as a collection

of circular, planar string loops that are uniformly distributed throughout space and

isotropically oriented. The density of loops and its time dependence are controlled

by the model parameters. The birefringence is calculated by considering photons

propagating through the network and associating an angle α = ±Aαem to a photon

that traverses the disk bounded by a loop. As the photon crosses through multiple

loops with random winding numbers ±1, the accumulated phase-shift grows like a

random walk. For two points on the sky γ̂1 and γ̂2 separated by an opening angle

θo = arccos(γ̂1 · γ̂2), the correlation between the accumulated birefringence of CMB

photons from these points is taken to be (13)

⟨α(γ̂1)α(γ̂2)⟩ = (Aαem)
2Nboth(θo) , (2.3)

where Nboth(θo) is the average number of loops that both photons traverse. The

associated angular power spectrum Cαα
ℓ is given by

Cαα
ℓ = 2π

∫ 1

−1

d(cos θo)Pℓ(cos θo) ⟨α(γ̂1)α(γ̂2)⟩ , (2.4)

and ℓ(ℓ+ 1)Cαα
ℓ /2π would be constant for scale-invariant anisotropic birefringence.

The model dependence enters through Nboth, which knows about the density of

loops in the network and their length distribution. It can be analytically approxi-

mated as (2)

Nboth(θo) ≈
∫ ∞

0

dζ

∫ z̃∗(ζ,θo)

0

dz Q(ζ, z, 0)χ(ζ, z) , (2.5)

where ζ is a dimensionless measure of loop length, z is redshift, Q(ζ, z, 0) is a kernel

function, and χ(ζ, z) contains the model dependence. Expressions for Q(ζ, z, 0) and

z̃∗(ζ, θo) are available in eqs. (3.25) and (3.34) of ref. (2). For the networks that

we study in the following subsections, the defects’ size tracks the growing Hubble

scale. Consequently birefringence on small angular scales is imprinted by small loops

at early times, whereas large-scale features are imprinted at later times; see fig. 2.4
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for an illustration. The model function χ(ζ, z) is normalized such that it becomes

time-independent for a string network in scaling χ(ζ, z) = χ(ζ), and then the average

string length per Hubble volume is ξ0/H with constant ξ0 =
∫∞
0
dζ χ(ζ).

Recent numerical simulations have sparked some debate as to whether global

string networks (such as the ones we consider here) exhibit scaling (39–46) with

constant ξ0 or whether they deviate from scaling (47–53) with a slowly-growing ξ0.

In our work, the CMB birefringence signal only depends upon the string network

evolution between recombination and today, so a logarithmic change in ξ0 would

induce a 1 − (log fa/Hcmb)/(log fa/H0) ∼ O(10%) effect on the birefringence signal,

which can be neglected. If the network maintains scaling we expect ξ0 ∼ O(few)

and if there is a logarithmic growth during the long time interval between formation

and recombination, we expect ξ0 ∼ log fa/Hcmb ∼ O(10); our analysis captures both

scenarios by setting a wide prior on ξ0.

2.2.1 Stable string network

For sufficiently small ALP masses ma < 3H0 and arbitrary Ndw, domain walls have

not yet formed today, and the defect network is a stable string network. We consider

the ‘uniform loop size’ model of ref. (2); the model function is

χ(ζ) = ξ0 δ(ζ − ζ0) , (2.6)

such that all loops in the network at time t have the same radius ζ0/H(t), and ξ0 is

the average number of loops per Hubble volume. Recent simulations (47–53) of axion

string networks identify a dominant population of large loops and infinite strings,

which motivates parameters: ξ0 = O(1− 10) and ζ0 = O(0.1− 1). The birefringence

two-point correlation function is approximately (2)

⟨α(γ̂1)α(γ̂2)⟩ ≈ A2ξ0 α
2
em





ζ0
4

(
log

(
1 + z̃∗(ζ0, θo)

)
− ζ0

3

)
θo < θt

1

3ζ0
log3

(
1 + z̃∗(ζ0, θo)

)
θo > θt

, (2.7)
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where θt ≈ 1. Note that there is a degeneracy between ξ0 and A; only the combination

A2ξ0 appears in the correlation function, and it controls the amplitude of the signal.

The expected birefringence signal is shown in fig. 2.5 for ζ0 = 1 and A2ξ0 = 1.

The left panel shows a simulated realization of the birefringence angle over the sky;

see app. 2.A for details of the simulation. Note the loop-like features that span a wide

range of angular scales. The right panel shows the corresponding angular power spec-

trum (2.4). For each realization we calculate a Cαα
ℓ ; the blue curve shows their mean

and the blue band shows the 68% containment region. This band broadens toward

low ℓ due to cosmic variance. Note that the spectrum is almost scale invariant for

ℓ ≲ 100, which follows from the assumed scale invariance of the string network. Exact

scale invariance is broken by the angular size of the string loops at recombination,

which sets a minimal angular scale for the birefringence anisotropies that corresponds

to the peak at ℓp ∼ 0.1π/(ζ0 θcmb) ≈ 40/ζ0. The right panel also shows the analytic

approximation in eq. (2.7) as the gray-dashed curve. Note that the approximation

agrees exceptionally well with the direct simulation, which partly validates our use of

eq. (2.7) for data fitting and parameter constraints in sec. 2.4.

2.2.2 Collapsing string-wall network

For ALP mass in the range 3H0 < ma < 3Hcmb with Ndw = 1, the string network

develops domain walls and collapses between recombination and today. We consider

the ‘string network collapse’ model of (2), which has the model function

χ(ζ, z) = ξ0 δ(ζ − ζ0) Θ(z − zc) . (2.8)

The dimensionless parameters ξ0 and ζ0 have the same interpretation as in sec. 2.2.1,

and zc is the redshift when 3H(t) = ma, which is given by

zc =

[(
(ma/3H0)

2 − ΩΛ

Ωm

)1/3

− 1

]
, (2.9)

in ΛCDM cosmology. The step function Θ(z−zc) models a rapid formation of domain

walls at z = zc and an abrupt collapse of the string-wall network, which shuts off
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any further accumulation of birefringence.‡ The birefringence two-point correlation

function is approximately given as (2)

⟨α(γ̂1)α(γ̂2)⟩ ≈ ξ0
(
Aαem

)2





ζ0
4
log

(
1+(z

3/2
c +z̃

3/2
∗ )2/3

1+zc

)
θo, θc < θt

ζ0
4
log

(
1 + (z

3/2
c + z̃

3/2
∗ )2/3

)

− 1
3ζ0

log3(1 + zc)− ζ20
12

θo < θt < θc

1
3ζ0

(
log3(1 + (z

3/2
c + z̃

3/2
∗ )2/3)

− log3(1 + zc)
)

θt < θo, θc

, (2.10)

where θc corresponds to the effective angular size of loops at the time of collapse.

We show the expected birefringence signal in fig. 2.6 for A2ξ0 = 1, ζ0 = 1, and

three choices of the ALP mass ma. Note that 3H0 ≈ 4.5 × 10−33 eV (for h = 0.7)

and Hcmb ≈ 1.0 × 10−29 eV (for zcmb = 1100, Ωm = 0.3, ΩΛ = 0.7, Ωr = 9 × 10−5).

Raising the ALP mass causes the network to collapse earlier, which suppresses power

at large angular scales, since larger loops would have formed later. The power spec-

trum displays a strong scale dependence ℓ(ℓ + 1)Cαα
ℓ ∝ ℓ2 for ℓ ≲ ℓc ∼ π/θc(ma),

where θc(ma) corresponds to the angular size of loops at the time of network col-

lapse (2). The power spectrum calculations also show good agreement between the

direct numerical simulation and the analytic approximation in eq. (2.10). An O(1)

discrepancy develops at large ma for high ℓ ≳ 100; for the purpose of data analysis,

we neglect this mismatch and use the analytic calculation (dashed curves).

2.2.3 Stable string-wall network

For Ndw ≥ 2 the formation of domain walls at the time when 3H(t) ≃ ma leads to a

stable string-wall defect network. The resultant CMB birefringence signal is expected

‡After the string-wall network collapses, its energy is transferred to a population of non-relativistic

ALPs (a subdominant component of the dark matter), which continue to induce birefringence.

However, this contribution to the total birefringence is suppressed at low ℓ by ∼ 10−3H0/ma for

ma ≳ 100H0, making it negligible (2).
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to be qualitatively unchanged from the stable string network without walls (13), which

we discussed already in sec. 2.2.1. We argue this point in two steps: first, we argue that

the realignment of smooth axion field gradients around strings into sharp gradients

across walls does not change the integrated gradient ‘seen’ by a photon propagating

through the network; and second, we argue that the abundance of walls in the network

follows the same scaling as the abundance of string loops in the wall-free network.

Since the birefringence signal is proportional to the integrated axion field gradi-

ent (2.2), it is necessary to understand how this quantity differs whether or not walls

are present in the network. For a network of axion strings without domain walls, the

axion field’s gradient varies smoothly throughout space. We illustrate this behavior

in fig. 2.7 by showing an axion field configuration for a collection of parallel long

strings (vortices in two dimensions). For instance, along the path from point A to

point B the axion field passes through a full cycle and the integrated field gradient is

∆a = 2πfa. If the same collection of strings were each connected to Ndw = 3 domain

walls, then the field gradients would be localized in space in order to minimize the

energy of the configuration. Nevertheless, on the path from A to B the integrated

field gradient would remain equal to ∆a = 2πfa; each wall contributes only 2πfa/3,

but there are 3 walls along the path. More generally, the presence or absence of walls

for a given collection of vortices will not impact the integrated phase gradient modulo

sub-2π variation in the field value at the endpoints.

The birefringence signal also depends upon the abundance of domain walls in the

string-wall network. Here we argue that for a network in scaling, the number density

of domain walls tracks the number density of string loops, which evolves in the same

way whether or not there are walls. Since every domain wall ends on a string and

each string has Ndw domain walls then the number densities of walls and strings

are related by ndw ≈ Ndwns.§ Numerical simulations (54–56) of axion string-wall

§Walls may also close on themselves forming bubbles. A photon passing through one of these

configurations does not experience a net birefringence since the contributions from the two wall
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networks indicate that the strings reach a scaling regime in which the number density

ns(t) evolves as if the walls were absent. Thus we conclude that the density of walls

in the string-wall network tracks the density of strings in the wall-free network.

It is worth noting that these arguments apply equally well for models with ma >

3Hcmb that form walls before recombination and for those with 3H0 < ma < 3Hcmb

that form walls after recombination. In terms of the parameter space shown in fig. 2.1,

the CMB birefringence signal will be qualitatively unchanged for “string network,”

“string→string-wall network,” and “string-wall network.”

The energy density in the stable string-wall network is stored mostly in the rest

mass of the domain walls, which have tension σ ≈ 8maf
2
a/N

2
dw. Since the wall’s

energy redshifts more slowly than strings, the stable string-wall network could present

a problem for cosmological observables. If ξdw is the average number of walls per

Hubble volume today, then the string-wall network’s energy density is approximately

ξdwσH0. A weak cosmological constraint is obtained by requiring this energy to be

small compared to the critical density today 3m2
plH

2
0 , which implies:

ξdwσH0

3m2
plH

2
0

∼
(

ξdw
Ndw/2

)(
Ndw

2

)−1(
ma

10−20 eV

)(
fa

1012 GeV

)2

≪ 1 . (2.11)

It is worth emphasizing that a sufficiently small decay constant fa allows a larger axion

mass ma while still satisfying the overclosure condition and observational constraints

on the axion-photon coupling (non-minimal models such as clockwork axion (57; 58)

may help to further open this parameter space). For instance, if fa ∼ 1010 GeV

(allowed in type IIB String Theory constructions in the large volume scenario (59;

60)), then the upper bound on ma can even be as large as ∼ 10−16 eV with ξdw/Ndw ∼

crossings cancel. On the other hand, some component of the birefringence signal arises from photons

emitted within a bubble and detected at a point outside (or vice versa) (16). Assuming that bubbles

are not nested, this component of the birefringence signal may be as large as |α| = Aαem/Ndw.

However, for the string-wall networks that we consider, the effect of multiple wall crossings (loop

crossing) allows |α| to accumulate to values that are larger than Aαem, which is the dominant

component.
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O(1). Axion masses above ma ≳ 10−21 eV are especially interesting, since they

avoid the Lyman-α bound on ultralight dark matter (61; 62). This scenario in which

the ultralight ALP makes up a significant fraction of dark matter and leads to a

birefringence signal in the CMB merits closer study, which we do not pursue further

here.

2.3 Measurements of cosmological birefringence with CMB

data

Cosmological birefringence is expected to leave a distinctive imprint on the polariza-

tion anisotropies in the cosmic microwave background radiation. At a given point on

the sky, a rotation in the CMB’s plane of polarization cannot be measured directly,

since the initial orientation on the surface of last scattering is not known. Neverthe-

less, the polarization pattern across the sky carries information about cosmological

birefringence. CMB polarization maps may be decomposed into parity-even E-mode

and parity-odd B-mode type polarization patterns (63–65). Thompson scattering at

the surface of last scattering generates E-mode polarization, whereas B-mode po-

larization requires parity-violating sources, such as gravitational wave radiation (66).

Cosmological birefringence partially converts E-mode polarization into B-mode polar-

ization (and vice versa). This induces a B-mode signal if none was present otherwise

and leads to correlations among the temperature and polarization patterns (67–69).

In order to extract information about birefringence from CMB temperature and

polarization data, it is customary to work with a set of statistical quantities that

provide unbiased estimators of the birefringence (67–69). These α-estimators are con-

structed from pairs of CMB power spectra (possibly also correlating across different

frequency bins). The power spectrum of the α-estimators are equal to the birefrin-

gence angular power spectrum Cαα
ℓ up to a noise term. In this way, the measured

EE, BB, EB, TE, and TB power spectra are used to reconstruct the birefringence

power spectrum. For pedagogical purposes, in app. 2.B we define the α-estimators
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and demonstrate the reconstruction procedure for mock polarization data.

The data from various CMB telescopes have been analyzed to search for evidence

of cosmological birefringence. Assuming that the birefringence effect is isotropic (same

rotation angle α at every point on the sky), several studies have recently reported

evidence for nonzero birefringence (70–73), including ref. (73) that reports an angle

0.342◦+0.094◦
−0.091◦ using data from Planck and WMAP. On the other hand, for anisotropic

birefringence that is statistically isotropic, data from several of the current-generation

CMB telescopes has been used to extract a measurement of the birefringence power

spectrum. The results of these studies are summarized in fig. 2.8. In particular,

note that Planck data has been analyzed by two different groups using different

α-estimators, which partly explains the scatter in their results. These various mea-

surements in fig. 2.8 indicate an absence of evidence for anisotropic cosmological bire-

fringence at the level of ∼ 0.1◦ or greater on large angular scales. Next-generation

surveys, such as COrE (74), LiteBIRD (75), Simons Observatory (76), CMB Stage

IV (77), and PICO (78), expect to deliver measurements of CMB polarization with

unprecedented precision. These observations will prove to be a powerful probe of

cosmological birefringence, improving constraints by 2 to 3 additional orders of mag-

nitude (79), and potentially uncovering evidence for birefringence from axion string-

wall networks. For the time being, the data shown in fig. 2.8 imposes constraints on

the models, which we quantify in the next section.

2.4 Constraints from anisotropic CMB birefringence measure-

ments

In this section we outline the Bayesian inference method have used to search for evi-

dence of birefringence in CMB data. For each dataset we approximate the likelihood

as a Gaussian and assume vanishing covariance across multipoles (data is available

for each multipole up to ℓ = 30, whereas data above ℓ = 30 is binned). We take the
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log-likelihood to be

lnL
(
Cobs

ℓ |θ
)
=

∑

ℓ

− 1

2σ2
ℓ

[
Cobs

ℓ − Cth
ℓ (θ)

]2
, (2.12)

where θ represents the model parameters of the theory (listed in tab. 2.1 along with

the assumed priors), and σℓ are the uncertainty in the observed values Cobs
ℓ . We

take them to be the error bars in the published birefringence power spectrum plots,

which are reproduced in fig. 2.8. To obtain the posterior for our likelihood and priors,

we perform a Markov Chain Monte Carlo (MCMC) simulation using the Metropolis

algorithm implemented in the Python package PyMC (87). For all data sets, we ran

10 chains in parallel for at least 5, 000 steps (with some up to even 50, 000 steps

depending upon the data set).¶ We assess their convergence by manually inspecting

their trace plots for good mixing, and also ensuring that the Gelman-Rubin statistic

R̂ (88), for each model parameter, is close to 1. For each parameter X ∈ θ (e.g.

X = A2ξ0), our Markov chains satisfy |R̂X − 1| < 0.04.

2.4.1 Stable string network

We first study a network of stable hyperlight axion strings. The birefringence power

spectrum Cαα
ℓ is calculated using the procedure described in sec. 2.2.1. It is a function

of the amplitude parameter A2ξ0 and the loop length parameter ζ0, which have the

priors shown in tab. 2.1. We allow the amplitude parameter A2ξ0 to take unphysical,

negative values in order to assess the presence of systematic bias in the data; we only

use positive values to derive constraints.

The result of our MCMC sampling is summarized in fig. 2.9, which shows the

posterior probability distribution over the amplitude parameter A2ξ0 and the loop

length parameter ζ0. This figure illustrates the constraints from Planck (2018) (1 ≤

¶PyMC requires the user to specify the number of tuning steps, used to optimize the sampling

algorithm. We used anywhere between 1000−2500 tuning steps (for different data sets), which were

eventually discarded to get all of our final results.
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stable strings collapsing string-wall

amplitude: A2ξ0 ∼ U(−∞,∞) A2ξ0 ∼ U(−∞,∞)

loop length: ζ0 ∼ U(0.1, 1.0) ζ0 ∼ U(0.1, 1.0)

axion mass: N/A log10
(
ma

eV

)
∼ U(−32.4, −28.0)

DW number: N/A Ndw = 1

Table 2.1 : The two string-wall network models that we study, their model parameters,

and the prior ranges used for MCMC sampling. The function U(a, b) denotes a

uniform probability density on the interval from a to b and a vanishing probability

outside this interval.

ℓ ≤ 24) and SPTpol (75 ≤ ℓ ≤ 525); constraints from other data sets can be found

in app. 2.C. The joint posterior distribution shows a degeneracy direction where

A2ξ0 = 0, since Cαα
ℓ becomes independent of ζ0 when A2ξ0 = 0. Similarly, the joint

posterior broadens toward smaller ζ0, since ζ0 = 0 is another degeneracy direction;

our prior enforces 0.1 ≤ ζ0 (see discussion in sec. 2.2.1), and the degeneracy at ζ0 = 0

is not seen on the plot. The SPTpol data has a very slight preference for A2ξ0 < 0

due to a pair of downward fluctuations in the data at ℓ = 120 and 160, whereas the

Planck (2018) data has a wider tail toward A2ξ0 > 0 due to a few upward fluctuations

at ℓ = 2, 5, and 6. Note that the Planck (2018) and SPTpol measurements have

comparable constraining power, even though the SPTpol measurements are almost

two orders of magnitude more precise. The signal Cαα
ℓ falls off with increasing ℓ,

while the precision of the data improves at a comparable rate up to about ℓ ∼ 200.

Thus, similar limits are obtained from Planck at low ℓ and SPTpol at high ℓ (and

also other data sets, with the exception of Polarbear; see app. 2.C). Furthermore,

since the signal spectrum drops off more quickly than the measurements’ precision

beyond ℓ ≳ 200, we do not expect such high ℓ data points to contribute significantly

towards our results.



36

Using the marginalized posterior distribution over the amplitude parameter A2ξ0,

we derive 95% confidence level upper limits for both data sets. In doing so, we discard

the unphysical parameter space with A2ξ0 < 0, and we enforce A2ξ0 ≥ 0. Planck

(2018) gives A2ξ0 < 13 (95% CL) and SPTpol gives A2ξ0 < 3.7 (95% CL). The

SPTpol limit is tighter, partly because the posterior distribution is slightly skewed

toward negative amplitudes, and we take only A2ξ0 > 0 to derive the limits. Since we

expect A = O(1) from UV model building and ξ0 = O(1 − 10) from string network

simulations, these limits are already strongly constraining.

These results are in good agreement with a previous study (15) that calculated

the posterior probability distribution over A2ξ0 and ζ0 and derived constraints on

the amplitude A2ξ0 using Planck (2015) data (82). See app. 2.C for our analysis of

the Planck (2015) data. Ref. (15) also presents results for a string network model

with a range of loops sizes (2), which we do not repeat here. Instead, we provide

birefringence constraints on a collapsing string-wall network below.

2.4.2 Collapsing string-wall network

We now study an axion string-wall network that collapses between recombination

and today. We calculate the birefringence power spectrum Cαα
ℓ by following the

procedure described in sec. 2.2.2. Tab. 2.1 shows our priors on the three model

parameters: the amplitude parameter A2ξ0, the loop length parameter ζ0, and the

axion mass parameter ma that controls when the network collapses; we fix Ndw = 1.

For ma ≲ 10−32.4 eV the string network has not yet collapsed in the universe today,

and we revert back to the analysis of sec. 2.4.1, whereas raising ma causes the network

to collapse earlier.

Our results are summarized in fig. 2.10, which shows the marginalized posterior

probability distribution over the model parameters. The degeneracy direction at

A2ξ0 = 0 is consistent with the discussion in sec. 2.4.1. The data prefers larger values

of the axion mass ma, and the marginalized posterior is peaked at the cutoff imposed
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by the prior ma < 10−28 eV. This is because the data is consistent with the absence of

cosmological birefringence, and raising ma suppresses power at large angular scales,

as seen in fig. 2.6.

Using the marginalized posterior distributions we calculate the 95% CL upper

limits on the amplitude parameter, which are found to be A2ξ0 < 55,000 for Planck

(2018) and A2ξ0 < 390 for SPTpol. In comparison with our study of the stable

string network from sec. 2.4.1, we see that the amplitude limits are weaker here. This

is partially because raising ma suppresses power at low ℓ and accommodates larger

A2ξ0. We also note that the Planck (2018) limit is weaker than the SPTpol limit

here by a factor of ∼ 100. The strongly scale-dependent power spectrum has Cαα
ℓ ∝ ℓ0

at large angular scales, which suppresses the signal in the range of multipoles from

1 ≤ ℓ ≤ 24 at which the Planck (2018) birefringence measurement is available, leading

to a weaker limit on the amplitude A2ξ0 as compared with SPTpol. This observation

emphasizes the complementarity between all-sky and ground-based measurements of

CMB polarization as probes of cosmological birefringence. A detection of anisotropic

birefringence on small angular scales (ℓ ∼ 100) without a detection on large angular

scales (ℓ ≲ 10) would point to a strongly scale-dependent source, and provide evidence

for cosmological birefringence from a collapsing axion string-wall network.

2.5 Compatibility with isotropic birefringence measurements

Aside from searches for anisotropic birefringence, various groups (70–73) have recently

analyzed all-sky polarization data to search for evidence of isotropic birefringence. In

particular, the authors of ref. (73) report a measurement of α = −0.342◦+0.094◦
−0.091◦ (68%

CL) using data from Planck and WMAP.‖ These analyses provide strong evidence

for isotropic birefringence in the CMB at more than 99.9% confidence. Here we

‖We have adopted the sign convention where a positive birefringence angle induces a counter

clockwise rotation in the plane of polarization. Our convention is opposite to the one used in

ref. (73), and we have added a minus sign in reporting their measurement.
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address the implications of this measurement for birefringence from axion string-wall

networks.

The axion string-wall network produces an anisotropic birefringence signal that is

statistically isotropic. A general birefringence map can be decomposed onto spher-

ical harmonics as α(n̂) =
∑

ℓ,m αℓmYℓm(n̂), and we are interested in the monopole

α00, which corresponds to isotropic birefringence. Averaging α00 over an ensemble

of universes gives zero, since positive and negative fluctuations are equally likely.

Nevertheless, every individual Universe has a nonzero α00. To illustrate this point,

we simulate 1000 realizations of the birefringence map for the stable string network

model, and plot the distribution over the monopole in fig. 2.11. As expected, the mean

is close to zero and the variance is approximately Cαα
0 that we calculate from theory.

The distribution is clearly non-Gaussian, displaying a tighter central distribution,

and moreover the circular features in the sky map imply correlations across modes.

Nevertheless, a normal distribution with zero mean provides a good approximation.

We intend to investigate the non-Gaussian behavior further in future work.

We evaluate the likelihood for isotropic birefringence as follows. We treat α00 =

S + N as the sum of uncorrelated signal and noise terms. The signal is modeled as

a Gaussian random variable with zero mean and variance Cαα
0 that we calculate in

the loop crossing model. The slightly non-Gaussian nature of the α00 distribution

is neglected for this analysis. The noise is modeled as a Gaussian random variable

with zero mean and standard deviation σ0 =
√
4π × 0.0925◦; this corresponds to the

average uncertainty in the isotropic birefringence measurement from ref. (73), and

the factor of
√
4π accounts for the normalization of the spherical harmonics.∗∗ We

extend our log-likelihood (2.12) to include the ℓ = 0 mode in this way, assuming it is

uncorrelated with the other multipoles, and we evaluate it at α00 =
√
4π× (−0.342◦).

∗∗If α(n̂) =
∑

ℓ,m αℓmYℓm(n̂) with Y00 = 1/
√
4π then the sky-averaged isotropic birefringence

angle is α =
∫
d2n̂α(n̂)/4π = α00/

√
4π. We are grateful to Eiichiro Komatsu for pointing out this

distinction.
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Note that the sign of α00 does not provide any constraint on the model; the monopole

α00 follows a symmetric distribution with zero mean.

We repeat the MCMC analysis and present the results in fig. 2.12. This figure

shows the marginalized posterior distribution over the amplitude parameter A2ξ0

for the stable string network model. First, taking only the anisotropic birefringence

measurements from SPTpol, this data is consistent with the absence of an ALP string

network, implying A2ξ0 < 3.7 (95% CL), as we also discuss in sec. 2.4.1. Second, the

isotropic birefringence measurement alone strongly favors the presence of an ALP

string network; the posterior is broad, peaking at A2ξ0 ≈ 40 − 50 and extending to

much larger values (not shown). Third, we show the fit to the joint likelihood, which

leads to the measurement A2ξ0 = 0.5± 1.0 (68% CL).

The anisotropic and isotropic birefringence measurements are difficult to reconcile

in the context of axion-defect-induced birefringence; this is one of the key results of our

work. The isotropic birefringence measurement favors a large amplitude parameter

A2ξ0, which is in conflict with the anisotropic birefringence measurements. There

is only a small overlap of the posterior distributions in the tail regions. Although

we present results for SPTpol here, the same conclusions can be drawn from the

Planck (2018) measurement of anisotropic birefringence (or other data sets) instead;

however, the wider tail of the Planck posterior distribution (see fig. 2.9) leads to a

smaller tension.

We have also performed a similar analysis for the collapsing string-wall network

model. Since larger ma suppresses the birefringence signal at low ℓ, an even larger am-

plitude A2ξ0 is required to accommodate the isotropic birefringence measurement at

ℓ = 0. However, this large amplitude comes into sharper tension with the anisotropic

birefringence measurements at ℓ > 0.
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2.6 Summary and conclusion

In this work we have studied models of axion-like particles that form a network of

cosmic strings and domain walls. We distinguish four model classes in the parameter

space spanned by the axion mass ma and the domain wall number Ndw: (1) a stable

string network that survives in the universe today, (2) a string network that forms

domain walls and collapses between recombination and today, (3) a string network

that forms stable domain walls between recombination and today, and (4) a string

network that forms stable domain walls before recombination.

We calculate the cosmological birefringence signal that these axion string-wall net-

works imprint on the polarization pattern of CMB radiation via the usual coupling

of the axion-like particles to electromagnetism. Using measurements of anisotropic

birefringence derived from polarization data taken by various CMB telescopes, we as-

sess the extent to which they are compatible with axion-defect-induced birefringence.

All of the measurements are consistent with the absence of birefringence from axion

string-wall networks, and we derive constraints on the amplitude of the signal. Our

main results are:

• For hyperlight ALP masses ma ≲ 3H0 ≃ 4 × 10−33 eV, we find that SPTpol

measurements constrain A2ξ0 < 3.7 at 95% CL (assuming A2ξ0 ≥ 0) where

A = −πfagaγγ/αem parametrizes the strength of the axion-photon coupling,

and ξ0 parametrizes the average total string length in a Hubble volume in units

of the Hubble length. In UV extensions of this effective theory, the parameter A
corresponds to an anomaly coefficient, which is model dependent but typically

equals an O(1) rational number. The precise expected value of ξ0 is a matter of

some debate, but broadly speaking ξ0 = O(1−10). For instance if ξ0 = 30 then

the constraint implies A ≲ 1/4. Thus, we conclude that SPTpol measurements

are already placing meaningful constraints on hyperlight axion-like particles and

their UV embedding.
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• For ALP masses in the range between 3H0 and 3Hcmb ≃ 1 × 10−28 eV and

for Ndw = 1, the anisotropic birefringence signal is predicted to be strongly

scale dependent ℓ(ℓ + 1)Cαα
ℓ ∝ ℓ2 for small ℓ (i.e. on large angular scales the

birefringence angles are uncorrelated). This is because the ALP string network

develops unstable domain walls when 3H ≈ ma, causing the string-wall network

to collapse and shutting off the source of large-scale birefringence. We find that

current measurements of CMB polarization provide no evidence for this signal,

which allows us to derive constraints on the axion mass ma and signal amplitude

A2ξ0. Looking forward to future surveys, this distinctive scale-dependent signal

provides a compelling target, since its detection would furnish a measurement of

the axion mass scale in the range 3H0 ≲ ma ≲ 3Hcmb. It may also be accessible

to redshift-dependent probes of birefringence (89).

• For larger domain wall numbers Ndw ≥ 2, the formation of domain walls when

3H ≈ ma leads to a stable string-wall defect network. We argue that the ex-

pected birefringence signal is qualitatively equivalent to the case of a stable

string network with ma ≲ 3H0. Thus, we do not perform a separate constraint

analysis of these stable string-wall networks, but rather expect out constraints

from the stable string network discussed in sec. 2.4.1 to carry over. It is in-

teresting that the stable string-wall network can be consistent with overclo-

sure constraints (depending on fa and Ndw) even for ALP masses as large as

ma ∼ 10−20 eV, which is the usual range of ultralight bosonic dark matter.

This observation provides motivation to study the connections between ultra-

light ALP dark matter, astrophysical constraints, and cosmological signatures.

• For hyperlight ALP masses, we find that the measurements of anisotropic bire-

fringence derived from ground-based telescopes such as ACTpol and SPTpol,

currently provide the strongest constraints on axion string-wall networks. A

plausible explanation is as follows. The birefringence power spectrum ℓ(ℓ +
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1)Cαα
ℓ peaks around ℓp ∼ 40/ζ0 before decreasing again at larger multipoles.

This translates to Cαα
ℓp

∼ (A2ξ0 ζ
2
0 ) (4× 10−5). Since the current ACTpol and

SPTpol measurements have data points around this region with strongest pre-

cision (σℓ ≲ 10−4 deg2), they end up providing the most stringent constraints.

• Among the various data sets that we consider, we find that anisotropic birefrin-

gence measurements derived from SPTpol data yield the strongest constraints

on axion-defect-induced birefringence. This is partly because of two downward

fluctuating data points at ℓ = 120 and ℓ = 160, which skew the amplitude

distribution towards negative values, leading to a tighter 95% CL upper limit

on A2ξ0 assuming A2ξ0 ≥ 0.

• We assess the extent to which recent measurements of a nonzero isotropic bire-

fringence are consistent with constraints on anisotropic birefringence in the

context of an axion-defect-induced signal. We find that it is somewhat difficult

for a stable string network (or stable string-wall network) to induce a birefrin-

gence signal that is compatible with the isotropic measurement and the lack of

an anisotropic signal. The situation is further exacerbated for the collapsing

string-wall network models due to additional reduced power on large angular

scales.

Finally, let us remark on potential directions for extending the computational

framework in which our results have been derived. The rich dynamics of a topological

defect network present a challenge toward deriving phenomenological observables.

In the work presented here, we have used the loop-crossing model (see sec. 2.2) to

reduce the complex network down to a manageable number of degrees of freedom

with which we can calculate a birefringence signal. The loop crossing model does not

capture certain features that an axion-string wall network is expected to exhibit: the

finite duration of domain wall formation and network collapse around 3H ∼ ma (for

Ndw = 1), or transition into a new scaling solution (for Ndw ≥ 2); and the gradual
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change in the axion field nearby to a string loop. This last feature is expected to

impact the low-ℓ power spectrum, since the axion field does not change by the full

asymptotic amount of ∼ 2πfa, leading to only α < Aαem during the last few e-

foldings. Or in the case of stable walls, there aren’t ∼ Ndw wall crossings in these

last few e-foldings before the CMB light reaches us in the present. It is important

to understand how each of these features affects the birefringence signal in order to

derive robust limits on axion string-wall networks from next-generation surveys.
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Figure 2.4 : An illustration of the loop-crossing model that we use to calculate the

axion-defect-induced birefringence signal. The string-wall network is modeled as a

collection of randomly oriented circular loops. The abundance and radius of the

loops evolves in time, tracking the Hubble scale; parameter ξ0 controls the number

of loops per Hubble volume and parameter ζ0 controls the loop size in Hubble units.

Photons crossing through a loop experience birefringence α = ±Aαem, and multiple

loop crossings add incoherently like a random walk. The all-sky maps show the

birefringence angle α that has accumulated up to the stated redshift based on a

typical realization of the defect network.
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Figure 2.5 : The expected birefringence signal due to a string network that survives

until today. We take A2ξ0 = 1 and ζ0 = 1. Left: A sample sky map of the birefrin-

gence angle α(n̂). Right: The angular power spectrum of the birefringence angle Cαα
ℓ .

The dashed black curve is our analytical approximation (2.7), while the blue curve

is the mean of a suite of 1000 simulations of the loop crossing model. The shaded

region shows the corresponding 68% central containment interval exhibiting cosmic

variance.
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Figure 2.6 : Same as fig. 2.5 but for a collapsing string-wall network (Ndw = 1). Sev-

eral curves for different axion mass ma are shown, corresponding to different collapse

redshifts zc given by eq. (2.9). For each ma, we also show the corresponding all-sky

birefringence map on the left. Increasing ma causes the network to collapse earlier,

and suppresses power at small ℓ (large angular scales).
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Figure 2.7 : An illustration of the axion field a/fa ∈ [0, 2π) in the vicinity of several

parallel long strings (vortices) with and without walls. Left panel: Color legend

indicating axion field values on a circle. Middle panel: The field around a long string

in cylindrical coordinates obeys ∇a = ±θ̂/ρ, and several strings are superimposed to

form the middle image. Right panel: Long strings are connected to Ndw = 3 domain

walls corresponding to sharp field gradients between minima at a/fa = 0, 2π/3, and

4π/3.
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Figure 2.8 : Measurements of anisotropic cosmological birefringence with data from

various CMB telescopes: Planck (2018) (80) (see also ref. (81)), Planck (2015) (82),

ACTpol (83), SPTpol (84), BICEP2/Keck Array (85), and Polarbear (86). Note

the different scales for ℓ < 30 and ℓ > 30. We do not show the measurements from

Planck (2015) for ℓ > 30 due to the large error bars. Additional data is available at

higher multipoles, which is also not shown in this summary figure. These measure-

ments are consistent with the absence of anisotropic cosmological birefringence.
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Figure 2.9 : For the stable string network we show joint posteriors obtained from

our MCMC simulations using anisotropic birefringence measurements derived from

Planck (2018) (80) and SPTpol (84) observations. Light and dark contours show

95% and 68% CL regions respectively.
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Figure 2.10 : Joint posteriors for the collapsing string-wall network. Data and contour

shading is the same as fig. 2.9.
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Figure 2.11 : Distribution over the monopole α00 of the birefringence map α(n̂). To

generate the gray histogram we simulate 1000 sky maps using the loop crossing model

with stable strings for parameters A = 1, ξ0 = 0.5, A2ξ0 = 0.5, and ζ0 = 1. These

parameters are chosen to maximize the “Isotropic BF + SPTpol” distribution shown

on fig. 2.12. We approximate the simulated distribution by a normal distribution

(black-dashed curve) with zero mean and variance Cαα
0 = (0.23◦)2 calculated from

the model. The orange curve shows the measurement of isotropic birefringence from

ref. (73), which we model as a normal distribution with mean
√
4π × (−0.342◦) =

−1.21◦ and standard deviation
√
4π × (0.0925◦) = 0.328◦.
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Figure 2.12 : Assessing the compatibility of isotropic and anisotropic birefringence

measurements. We show the marginalized posterior over the amplitude parameter

A2ξ0 for the stable string network model. The isotropic birefringence measurement

favors a nonzero amplitude to fit the monopole α00 (orange), whereas the anisotropic

measurements using SPTpol data constrain the amplitude around zero (blue). The

small overlap of the two distributions illustrates the difficulty in accommodating both

measurements from axion-defect-induced birefringence. A joint likelihood combining

both measurements (red) favors A2ξ0 = 0.5± 1.0 at 68% CL.
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Appendix

2.A Simulating loop crossing model

Here we present a step-by-step procedure of how we simulate the loop crossing model

to generate birefringence maps using HEALpix (90).

1. Initialize HEALPix map. We begin by making a HEALpix map with pixel

parameter Nside = 2048, and initialize a null array of length Npix = 12N2
side.

2. Choose time steps. For time evolution, we pick redshifts in logarithmic

intervals from recombination zcmb = 1100 till the present z = 0, in the following

manner

1 + zn = (1 + zcmb)

(
1 + zfinal
1 + zcmb

)(n−X)/Nsteps

. (2.13)

Here, the index n goes from 1 to Nsteps = 28, and X is a random variable sampled

uniformly between −1/2 and 1/2 at the start of the simulation (subsequent

steps then use the same value). This ensures each simulation samples different

redshift steps over many simulations. This reproduces a continuous evolution,

when averaged over a large ensemble of simulations.

3. Run simulation. For each redshift step zn:

3.1. We populate the CMB light cone (from zn−1 to zn) with circular loops, all

having the same dimensionless radius ζ. The number of loops is determined

by calculating the average number of loops N and randomly selecting each

pixel to be the center of a loop with probability N/Npix. Assuming the
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network is in scaling, the average number density is

n =
ρ

E
=

ξ0H
3

2πζ
. (2.14)

Here ρ = ξ0µH
2 is the energy density of the scaling network, E = µ2πζ0H

−1

is the energy of a circular string loop with radius ζ0H
−1 and tension µ.

The average number of loops on the CMB light cone from zn−1 to zn is

therefore

N =

∫
dVlightcone (number density)

=

∫ zn−1

zn

dz
ξ0(aH)3

2πζ0
4πs(z)2H−1(z) .

(2.15)

Here s(z) is the comoving distance from an observer on Earth to the centers

of loops through which CMB photons crossed at redshift z.

3.2. Out of Npix, we randomly select NT pixels on the sphere for loop centers.

Every loop is given a random orientation and assigned a random winding

number w (equal to +1 or −1 with equal probability). For uniformly

oriented loops, cosΘ ∼ U(0, 1) and Φ ∼ U(0, 2π), where (Θ,Φ) are polar

and azimuthal angles measured relative to the normal vector of the loop’s

center pixel.

3.3. After populating the CMB light cone with NT loops, for every loop we

find the region/pixels bounded by its spherical projection onto the sphere.

(The function healpy.query_polygon() was used for this purpose). All

the pixels in the region are assigned the value wAαem where w is the

winding number of the loop.

3.4. We repeat this procedure until n = Nsteps, and perform many such simu-

lations for ensemble averaging.
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2.B Statistical estimator for anisotropic birefringence

This appendix includes supplementary material regarding: the effect of birefringence

on the CMB, a statistical estimator that may be used to measure birefringence from

CMB polarization data, and a demonstration of how the estimator works using sim-

ulated data.

The effect of birefringence on the CMB is most easily understood in position

space where n̂ is a unit vector at some point on the sky. If T̃ (n̂), Q̃(n̂), and Ũ(n̂)

denote the would-be CMB temperature and polarization sky maps in the absence

of birefringence, then an anisotropic birefringence angle α(n̂) mixes Q- and U -mode

polarization (91), giving rise to the observable sky maps

T = T̃ (2.16a)

Q = Q̃ cos 2α− Ũ sin 2α (2.16b)

U = Q̃ sin 2α + Ũ cos 2α . (2.16c)

If T̃ , Q̃, and Ũ were known, then eq. (2.16) would allow α to be extracted from

measurements of T , Q, and U . Of course, the would-be temperature and polarization

anisotropies of the CMB cannot be calculated (nor measured), but the statistical

properties of these fields are calculable. This observation motivates one to define

a birefringence estimator, which reproduces the true birefringence as a statistical

average.

Several statistical estimators of anisotropic birefringence have been proposed in

the literature. Here we discuss a particular set of estimators that have been used in

recent CMB data analyses. These are similar to the quadratic estimators proposed by

Hu and Okamoto (92) for studies of CMB weak lensing, building on which the authors

of ref. (67–69) constructed another set of estimators for studies of CMB birefringence.

Following the notation of ref. (15), the birefringence estimators in the flat-sky
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approximation (68) can be written as

α̂XY (L) = λXY (L)

∫
d2l1
(2π)2

X(l1)Y
∗(l2)FXY (l1, l2)

∣∣
l2=l1−L

(2.17)

where X and Y stand for temperature T , parity-even E-mode polarization, or parity-

odd B-mode polarization. In fact there are five different birefringence estimators

corresponding to the choice of XY ∈ {EE,BB, TE, TB,EB} (since XY = TT is

trivial). In the flat-sky approximation, L, l1, l2 ∈ R2 are the analogs of the spherical

harmonic integer indices (ℓ,m), and eq. (2.17) assumes L ̸= 0. The estimator inte-

grates over X(l) and Y (l), which represent the observed temperature or polarization

maps, weighting them by the mode coupling coefficients

FXY (l1, l2) =





fXY (l1,l2)

(1+δXY )CXX
l1

CY Y
l2

, XY ̸= TE

CY Y
l1

CXX
l2

fXY (l1,l2)−CXY
l1

CXY
l2

fXY (l2,l1)

CXX
l1

CY Y
l2

CXX
l2

CY Y
l1

−(CXY
l1

CXY
l2

)2
, XY = TE

. (2.18)

Here CXY
ℓ are the predicted power spectra (or cross-correlation spectra if X ̸= Y ), δXY

is the Kronecker delta, and the response functions fXY (l1, l2) are given in tab. 2.B.1.

Finally the normalization coefficient

[λXY (L)]
−1 =

∫
d2l1
(2π)2

fXY (l1, l2)FXY (l1, l2)
∣∣
l2=L−l1

(2.19)

ensures that α̂XY (L) is an unbiased estimator.

We seek to demonstrate how the estimator (2.17) reconstructs a known birefrin-

gence map α(n̂) from an ensemble of simulated temperature and polarization maps.

This is done with the following procedure.

1. We begin by calculating the angular power spectra C̃TT
ℓ , C̃EE

ℓ , and C̃TE
ℓ using

CAMB (93) (we take C̃BB
ℓ = C̃TB

ℓ = C̃EB
ℓ = 0). Assuming Gaussian fluctu-

ations, we construct all-sky temperature and polarization maps, T̃ (n̂), Q̃(n̂),

and Ũ(n̂) using healpy (the Python wrapper for HEALPix).

2. Next, we generate a birefringence map α(n̂) using the procedure outlined in

app. 2.A; since this is just a proof of principle demonstration, the parameters

of the string network model are not particularly important.
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XY fXY (l1, l2)

TT 0

TE −2C̃TE
l1

sin 2φ12

TB 2C̃TE
l1

cos 2φ12

EE −2
(
C̃EE

l1
− C̃EE

l2

)
sin 2φ12

EB 2
(
C̃EE

l1
− C̃BB

l2

)
cos 2φ12

BB −2
(
C̃BB

l1
− C̃BB

l2

)
sin 2φ12

Table 2.B.1 : Response functions. Here φij = φli − φlj where cosφl ≡ n̂ · l̂. In

symlens cos 2φ12 is represented symbolically by symlens.cos2t12.

3. Using the simulated birefringence map, we transform the temperature and po-

larization maps according to eq. (2.16), and convert Q and U maps to E and

B maps.

4. In order to apply the flat-sky estimator, we isolate some small section of the

all-sky maps and port it into the pixell (94) software.

5. With the chosen small section, we calculate the birefringence estimator α̂EB(L).

We use symlens (95) to evaluate the integrals in eq. (2.17).

6. Finally we perform an inverse 2D Fourier transform on α̂EB(L) to obtain the

reconstructed birefringence map α̂EB(n̂).

Fig. 2.B.1 shows the result of the above procedure. The left panel shows the ‘true’

birefringence map α(n̂), which acts on the CMB polarization anisotropies according

to eq. (2.16). The middle and right panels show the reconstructed birefringence map

α̂EB(n̂) using only 1 and an average over 20 realizations of the CMB, respectively.

Upon averaging over many CMB realizations, the estimator should converge to the

true birefringence map (for an unbiased estimator). We note that even a single CMB
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Figure 2.B.1 : A demonstration of how the statistical estimator α̂EB(n̂) from eq. (2.17)

reconstructs a birefringence map α(n̂). Left: The ‘true’ birefringence map α(n̂). Mid-

dle: The reconstructed birefringence map α̂EB(n̂) obtained from a single realization

of the CMB temperature and polarization maps. Right: Reconstructed birefringence

map α̂EB(n̂), averaged over a suite of 10 realizations. Our implementation of the

estimator in this figure introduces a multiplicative bias (not perceptible here) that

scales inversely with the map width.

realization leads to a reliable reconstruction that captures many qualitative properties

of the true map, e.g. scale and shape of loop-like features.

2.C Alternative birefringence data

Measurements of anisotropic cosmological birefringence are available from the various

CMB telescopes; see fig. 2.8. Using each of these data sets individually, we derive

constraints on the axion string-wall network models. Our results are summarized in

this appendix.

Fig. 2.C.1 shows the marginalized probability distribution over the amplitude pa-

rameter A2ξ0 for the stable string network (left panel) and the collapsing string-wall

network (right panel). Each curve corresponds to a measurement of anisotropic bire-

fringence using data from a different CMB telescope; see fig. 2.8. The corresponding

95% CL upper limits on the amplitude parameter (assuming 0 < A2ξ0) are summa-
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Figure 2.C.1 : Marginalized posterior on the amplitude parameter A2ξ0 for a network

of stables strings (left panel) and a collapsing string-wall network (right panel).

stable strings collapsing string-wall

Planck (2015): A2ξ0 < 13 A2ξ0 < 55, 000

Planck (2018): A2ξ0 < 13 A2ξ0 < 18, 000

ACTpol: A2ξ0 < 7.1 A2ξ0 < 1, 100

SPTpol: A2ξ0 < 3.7 A2ξ0 < 390

BICEP2/Keck : A2ξ0 < 11 A2ξ0 < 3, 200

Polarbear: A2ξ0 < 81 A2ξ0 < 3, 300

Table 2.C.1 : Upper limits at 95% CL on the amplitude parameter A2ξ0 derived from

measurements of anisotropic birefringence using data from various CMB telescopes.

rized in tab. 2.C.1.

From these results, one can see that each of the data sets is consistent with A2ξ0 =

0 at the 1σ level, corresponding to the absence of axion-defect-induced birefringence.

SPTpol provides the strongest constraints on the amplitude of the signal, for both the
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stable string network model and the collapsing string-wall network model. An upward

fluctuation in the Polarbear data (86) leads to a ∼ 1σ preference for A2ξ0 > 0,

whereas several downward fluctuations in the BICEP2/Keck Array data (85) broaden

the distribution toward negative amplitudes. For the collapsing string-wall network,

the Planck data is less constraining, consistent with the discussion in sec. 2.4.

Using a birefringence measurement (82) derived from Planck (2015) data, we find

that the network of stable strings is constrained by A2ξ0 < 13 at 95% CL. This

particular data set was also analyzed by another recent study (15), and our results

are in good agreement. Note that ref. (15) presents a constraint A2ξ0 < 8.0 at 95%

CL, which is derived allowing A2ξ0 < 0. To compare with our result, we digitize the

marginalized posterior from fig. 5 of ref. (15) and calculate A2ξ0 < 12.6 at 95% CL

when imposing A2ξ0 > 0, which is in excellent agreement with our result.
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Chapter 3

Measures of non-Gaussianity in axion-string-induced
CMB birefringence

In chapter 2 I presented LCM parameter inference results obtained by comparing

LCM birefringence power spectra against published birefringence power spectrum

measurements. Our analysis placed constraints on the LCM parameters A, ζ0 and

ξ0 (1). One of the main results of that paper is that we found the measured power

spectra constrains the power spectrum amplitude to be A2ξ0 < 3.7. The parameter

A is a fundamental physics parameter related to the sum of electromagnetic charges

of particles in the theory, unlike ξ0 which is a phenomenological parameter. Since

the birefringence power spectrum is directly proportional to A2ξ0, our methodology

in chapter 2 does not allow us to directly place constraints on A. In order to make

progress in this direction we identified that statistical properties of LCM birefringence

other than the power spectrum needed to be studied.

However, random fields like all-sky birefringence maps α(n) contain more infor-

mation than just their power spectrum unless they are Gaussian random fields. The

maps produced by the LCM are distinctly non-Gaussian. The work shown in this

chapter (chapter 3) characterise the nature of the non-Gaussianity using their kurto-

sis and bispectrum as measures.

Notes about this project: This chapter is from a paper I wrote with my Andrew

J. Long that was published in the Journal of Cosmology and Astroparticle Physics in

2023 (2).
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Abstract

The presence of axion strings in the Universe after recombination can leave an imprint

on the polarization pattern of the cosmic microwave background radiation through

the phenomenon of axion-string-induced birefringence via the hyperlight axion-like

particle’s coupling to electromagnetism. Across the sky, the polarization rotation

angle is expected to display a patchwork of uniform regions with sharp boundaries

that arise as the ‘shadow’ of axion string loops. The statistics of such a birefringence

sky map are therefore necessarily non-Gaussian. In this article we quantify the non-

Gaussianity in axion-string-induced birefringence using two techniques, kurtosis and

bispectrum, which correspond to 4- and 3-point correlation functions. If anisotropic

birefringence were detected in the future, a measurement of its non-Gaussian prop-

erties would facilitate a discrimination across different new physics sources generally,

and in the context of axion strings specifically, it would help to break degeneracies

between the axion-photon coupling and properties of the string network.

3.1 Introduction

Observations of the cosmic microwave background (CMB) temperature and polariza-

tion anisotropies have informed our understanding of the composition, structure, and

evolution of the Universe. These precision measurements have also revealed some

surprises, such as the mysterious dark matter and dark energy that permeate the

Universe. Ongoing and future observations, with significantly higher precision, may

uncover evidence for additional cosmological relics that are currently out of reach

(3; 4) such as cosmic axion strings. In this work we seek to quantify the signatures

of axion strings through their non-Gaussian cosmic birefringence.

Cosmic strings, one-dimensional topological defects formed from scalar fields (5),

are predicted to arise in the early universe during phase transitions associated with as-

yet undiscovered new physics. While the new particles and forces may be inaccessible,

because they are too heavy to be produced at high-energy colliders or too feebly
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coupled to be probed in the laboratory, the network of cosmic strings can leave a

detectable imprint on the CMB radiation, which is both exquisitely measured and

theoretically well understood. For example, searches for the gravitational influence of

cosmic strings on the CMB anisotropies have already yielded an upper limit on the

strings’ tension (6; 7), which translates into a strong constraint on the scale of new

physics. On the other hand, if the string-forming fields couple non-gravitationally

to visible matter and radiation, novel channels for testing these theories become

available. Cosmic strings formed from hyperlight axion-like particles (ALPs) that

couple to electromagnetism provide an especially compelling target, since they are

expected to induce a birefringence of CMB polarization (8).

The phenomenon of axion-induced birefringence has been a subject of great inter-

est for many years (9–20). The important aspect of birefringence from axion strings

(8) is that the typical axion field excursion is large ∆a ≈ 2πfa , thereby evading a

suppression factor that appears for other models, such as axion dark matter. Sev-

eral recent studies (1; 21–27) have explored the signatures of axion-string-(and do-

main wall)-induced birefringence, calculated the angular power spectrum, and as-

sessed compatibility with the various measurements of CMB birefringence (including

a claimed detection of isotropic birefringence (28–33)). To summarize, these studies

conclude that the current generation of CMB telescopes (Planck, SPTpol, ACTpol,

BICEP2/Keck Array, Polarbear) are nearly sensitive enough to probe the most

well-motivated parameter space, and next-generation telescopes will put these theo-

ries to the test.

Whereas most of the work on axion-string-induced birefringence has focused thus

far on two-point statistics such as the angular power spectrum, the higher moments

contain a wealth of valuable information that could help to discriminate across differ-

ent sources of birefrigence (27) if a detection were made with next-generation surveys

(34). We illustrate this point in fig. 3.1.1; the left panel shows a simulated map of the

birefringence angle across a patch of the sky arising from a network of axion strings,
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and the right panel shows a map that was simulated using Gaussian statistics with

the same angular power spectrum. These two images can be distinguished easily: the

map on the left displays disk-like structures, corresponding to the imprint of axion

string loops. Since these birefringence maps have the same two-point correlations, the

difference between them arises from higher-order correlations, which cannot reduce

to two-point correlations for non-Gaussian statistics.

In this work we seek to quantify these non-Gaussian features in axion-string-

induced birefringence using three-point correlations (bispectrum) and four-point cor-

relations (kurtosis), which are familiar tools from studies of CMB non-Gaussianity

(35). Similar techniques have been used in the past (36–39) to search for evidence

of a cosmic string network’s gravitational influence of the CMB anisotropies. Our

approach is complementary to the one taken in ref. (27), which contains a related

analysis of axion-string-induced birefringence using the scattering transform.

3.2 Kurtosis

We denote the birefringence map by α̂(n) where n is a unit vector, indicating a

direction on the sky, and α̂ is the birefringence angle, corresponding to the rotation

of the polarization axis. We use hats to denote random variables and angled brackets

to denote ensemble averaging. The birefringence map admits a multipole expansion:

α̂(n) =
∞∑

ℓ=0

ℓ∑

m=−ℓ

α̂ℓmYℓm(n) (3.1)

where α̂ℓm are called the multipole moment coefficients and Yℓm(n) are the spherical

harmonics; we use the standard normalization
∫
d2n |Yℓm(n)|2 = 1. Since the bire-

fringence map is real α̂(n)∗ = α̂(n), the complex multipole moment coefficients obey

α̂∗
ℓm = (−1)m α̂ℓ−m.

Kurtosis is a convenient measure of non-Gaussianity that is both easy to calcu-

late and intuitive to understand. The kurtosis of the (complex) multipole moment
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Figure 3.1.1 : Left: a simulated map of the birefringence angle α(n̂) for an axion

string network. Right: a simulated map assuming Gaussian statistics with the same

power spectrum as the left map. The disk-like features on the left map are a man-

ifestation of the non-Gaussian nature of the stochastic variable. The non-Gaussian

map is generated using the loop-crossing model with ζ0 = ξ0 = A = 1; see sec. 3.2 for

additional details.

coefficients is given by

κℓm =

〈∣∣α̂ℓm − ⟨α̂ℓm⟩
∣∣4〉

〈∣∣α̂ℓm − ⟨α̂ℓm⟩
∣∣2〉2 =

〈∣∣α̂ℓm

∣∣4〉
〈∣∣α̂ℓm

∣∣2〉2 , (3.2)

where the first equality is the general definition, and the second equality holds for

axion-string-induced birefringence that has vanishing 1-point functions ⟨α̂ℓm⟩ = 0. If

the real and imaginary parts of the multipole moment coefficients were i.i.d. Gaussian

random variables, then Isserlis’s theorem (Wick’s theorem) would reduce the 4-point

functions to products of 2-point functions. For modes with m = 0 the reality condition

forces α̂ℓ0 to be real implying κℓm = 3, whereas for m ̸= 0 the complex α̂ℓm would
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have κℓm = 2 instead.∗ We define the excess kurtosis

∆κℓm =




κℓ0 − 3 , for m = 0

κℓm − 2 , for m ̸= 0

, (3.3)

which vanishes for Gaussian statistics. A positive excess kurtosis ∆κℓm > 0 corre-

sponds to a distribution with a tighter center and broader tails than a Gaussian having

the same mean and variance. In this way, kurtosis provides an intuitive measure of

the departure from Gaussianity.

We seek to employ kurtosis as a measure of non-Gaussianity in axion-string-

induced birefringence maps. To that end, we simulate birefringence maps using the

loop-crossing model (LCM), as described in refs. (1; 23). The LCM is informed by

simulations of axion string networks including refs. (40–56). In this model, the string

network is approximated as a collection of circular planar loops with a statistically

homogeneous distribution through space and a statistically isotropic orientation. On

cosmological time scales, the number density of loops decreases and the length of

loops grows so as to track the cosmological expansion. Specifically, the number den-

sity of loops at time t is n(t) = ξ0H(t)3/2πζ0 and the radius of loops at time t is

ζ0/H(t) where H(t) is the Hubble parameter. The dimensionless coefficients, ξ0 and

ζ0, are two model parameters, and string network simulations motivate values around

ξ0 = 1-10 and ζ0 = 0.1-1. As a photon propagates through the string network, from

the CMB to a detector on Earth, birefringence accumulates each time the photon

passes through the disk bounded by a string loop. The birefringence induced by each

loop crossing is ±Aαem where the dimensionless anomaly coefficient A = 0.1-1 is an-

other model parameter, αem ≃ 1/137 is the electromagnetic fine structure constant,

and the two equally-probable signs ±1 depend on the relative orientation of the loop

∗For a single Gaussian random variable x̂ with ⟨x̂⟩ = 0, one finds ⟨x̂4⟩ = 3⟨x̂2⟩2 and the kurtosis

is ⟨x̂4⟩/⟨x̂2⟩2 = 3. For a complex random variable X̂ = x̂ + iŷ with statistically independent real

and imaginary parts ⟨x̂ŷ⟩ = 0, one finds instead ⟨|X̂|4⟩ = ⟨(x̂2 + ŷ2)2⟩ = 3⟨x̂2⟩2 +2⟨x̂2⟩⟨ŷ2⟩+3⟨ŷ2⟩2

and ⟨|X̂|2⟩2 = ⟨x̂2⟩2 + 2⟨x̂2⟩⟨ŷ2⟩+ ⟨ŷ2⟩2, and the kurtosis is ⟨|X̂|4⟩/⟨|X̂|2⟩2 = 2 for ⟨x̂2⟩ = ⟨ŷ2⟩.
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and the photon’s propagation direction. The signal of axion-string-induced birefrin-

gence also depends upon the axion mass scale ma, since the string network forms

domain walls when the Hubble parameter is comparable to the axion mass scale, pos-

sibly suppressing the signal of axion-string-induced birefringence (1). In this work,

we assume that the axion mass is smaller than the Hubble scale today ma ≲ 3H0

and the string network survives until present times, allowing for an unsuppressed

birefringence signal. We implement the loop-crossing model in a Python code that

interfaces with HEALPix (57; 58) taking Nside = 128 or 512 for different studies in

this work. With a large number of simulated birefringence maps we calculate sam-

ple means to estimate ensemble averages and thereby evaluate the kurtosis of the

multipole moment coefficients.

Using the loop-crossing model, we obtain more than 60,000 simulated realiza-

tions (up to 150,000) of the axion-string-induced birefringence map. For each map

we extract the multipole moment coefficients α̂ℓm. To assess the departure from

Gaussianity, we show in fig. 3.2.1 the distributions over Re α̂ℓm for the lowest sev-

eral multipole moments. The distributions over Im α̂ℓm (not shown) are similar.

We only show multipole moments with m > 0 since the reality condition imposes

Re α̂ℓm = (−1)m Re α̂ℓ−m. We give values of the sample mean µ̂ℓm, sample standard

deviation σ̂ℓm, and sample excess kurtosis ∆κ̂ℓm that were inferred from the suite of

simulations. To highlight the departure of these distributions from Gaussianity, we

show a normal distribution (dashed line) with the same mean and variance as each

histogram. The histograms are approximately symmetric and centered close to zero,

since each loop crossing shifts the birefringence by ±Aαem with equal probability.

Fig. 3.2.1 displays a departure from Gaussianity for multipole moments with small

index ℓ. For ℓ = 0 and 2, the distinction between the histogram and the normal

distribution is clearly evident. One can easily see that the histogram is tighter and

taller around α̂ℓm = 0, and close inspection reveals that it also has wider tails. In

general such features correspond to a positive excess kurtosis. For the monopole we
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find the excess kurtosis to be ∆κ̂0,0 ≈ 1.51; for the quadrupole it is ∆κ̂2,m ≈ 0.4;

and for ℓ = 8 is it ∆κ̂8,m ≈ 0.06. For a given ℓ we find that each m has a similar

distribution, which is consistent with the underlying statistical isotropy of the loop-

crossing model. These examples illustrate that the excess kurtosis decreases as the

multipole index ℓ increases.

We are interested in how the kurtosis varies across angular scales, and specifically

how quickly the excess kurtosis decreases for higher multipole moments. Since the

loop-crossing model generates a statistically isotropic birefringence map, we expect

that ∆κ̂ℓm should only depend on the index ℓ. This observation motivates us to define

the ‘angle-averaged’ excess kurtosis

∆κ̂ℓ ≡
1

ℓ

ℓ∑

m=1

∆κ̂ℓm , (3.4)

for ℓ > 0. In fig. 3.2.2 we show the average excess kurtosis across a range of angular

scales corresponding to multipole moment indices ℓ = 1 to 100. We obtain these nu-

merical results from simulated birefringence maps obtained through the loop-crossing

model with four values of the dimensionless loop-length parameter: ζ0 = 10 corre-

sponding to ten-times Hubble scale loops, ζ0 = 1 corresponding to Hubble scale loops,

ζ0 = 10−0.5 ≈ 0.316, and ζ0 = 0.1 corresponding to loops that are a tenth of the Hub-

ble scale. Kurtosis is independent of the parameter A, since α̂ℓm ∝ A and this factor

cancels when calculating kurtosis as a ratio of multipole moment coefficients through

eq. (3.2).

Fig. 3.2.2 exhibits several notable features. We observe that: (1) the excess kurto-

sis is positive across this range of multipoles and for this set of model parameters; (2)

the excess kurtosis is ≈ 0.1-10 at low multipoles, and its value goes inversely with ζ0;

and (3) the excess kurtosis decreases with increasing multipole index ℓ in a (statisti-

cally) monotonic way, and it approximately follows a broken power law scaling. These

features can be loosely understood as follows. For ζ0 = 1 the string network contains

only one or two loops at the largest angular scales (smallest ℓ), and the statistics of the
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birefringence map should also be order one numbers implying κ̂ℓm ≈ 1 and ∆κ̂ℓ ≈ 1.

Increasing ℓ corresponds to decreasing the angular scale of interest, and the network

contains more loops at smaller scales on average. As the number of loops increases,

their imprint on the birefringence map corresponds to many overlapping disks and

ellipses that each contribute ±Aαem. Since each loop’s contribution can be either

positive or negative (with equal probability, associated with the random orientation

of the loop), the net birefringence grows like a random walk with a random number of

steps. By the central limit theorem, the statistics of this quantity converge to Gaus-

sian in the limit of many loops. Consequently, one expects an increasingly Gaussian

birefringence map on smaller angular scales, corresponding to an inverse relationship

between ℓ and ∆κ̂ℓ, such as the one seen in fig. 3.2.2. Furthermore, one expects the

excess kurtosis to be positive, because the non-Gaussianity is primarily driven by the

fact that there are few large loops. These rare outliers boost the tails of the α̂ℓm

distribution at values that are relatively large compared to the standard deviation;

such features are characteristic of a distribution with positive excess kurtosis.

The preceding loose argument can be formulated more concretely for the monopole

α̂00, which is proportional to the sky-average birefringence angle. This analysis is

presented in app. 3.A. We find that the excess kurtosis in the monopole is inversely

proportional to the average number of loops, ∆κ̂0 = 1/N loops. Extending this scaling

to the higher multipole moments suggests the relationship ∆κ̂ℓ ∼ 1/N ℓ, where N ℓ

is the average number of loops at a given angular scale ∼ π/ℓ. By evaluating the

average number of loops as a function of ℓ and the string network model parameters,

ζ0 and ξ0, we obtain an analytical estimate of the excess kurtosis

∆κ̂ℓ ∼
ζ0
8ξ0

(
1 +

π

λζ0ℓ

)2

. (3.5)

Here λ ≈ 0.3 is a constant numerical factor. See app. 3.A for the derivation of

eq. (3.5).

The analytical formula in eq. (3.5) agrees well with the numerical results presented

in fig. 3.2.2. Eq. (3.5) implies that ∆κ̂ℓ should scale like ℓ−2 for ℓ ≪ π/(λ ζ0) ≈ 10/ζ0
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and like ℓ0 for larger ℓ. Similarly, fig. 3.2.2 shows an ℓ−2 scaling for small values

of ℓ, and a flattening (in the ζ0 = 10, 1, and 0.316 curves) for larger values of ℓ

approaching ℓ = 100. Additionally, the angular scale dividing these two regimes is

well approximated by 10/ζ0. For the ζ0 = 0.1 curve, the flattening is not seen, and

this is compatible with the analytical model since the transition scale 10/ζ0 ≈ 100,

and the full plot range from ℓ = 1 to 100 is in the ℓ−2 regime. Eq. (3.5) also predicts

a scaling with the model parameters (ζ0, ξ0, and A) that agrees well with fig. 3.2.2.

For low multipoles, the formula implies ∆κ̂ℓ ∝ 1/ζ0, which is consistent with the

numerical results in the figure insofar as lowering ζ0 increases the excess kurtosis for

ℓ ≲ 30. For high multipoles, the formula implies ∆κ̂ℓ ∝ ζ0, indicating a reversal

of the scaling with ζ0. The same reversal is seen on the figure, although the linear

∝ ζ0 scaling is not observed. This is possibly because we only show multipoles up

to ℓ = 100, whereas larger values of ℓ are required to exhibit the linear scaling.

Additionally, eq. (3.5) implies the relation ∆κ̂ℓ ∝ ξ−1
0 , which we have also verified

with numerical simulations taking A = ζ0 = 1 and ξ0 = 0.1, 1, and 10 (results not

shown here). Eq. (3.5) implies that ∆κ̂ℓ is independent of A, and this is because A
does not impact the average number of loops N ℓ; more generally, A cancels from the

kurtosis calculation entirely.

To conclude, let us address the issues of observability and cosmic variance. For

a single realization of the CMB sky, one can measure the excess kurtosis using an

unbiased kurtosis estimator. We consider a simple excess kurtosis estimator defined

by

∆κ̂
(1)
ℓ =

1

ℓ

ℓ∑

m=1

|α̂ℓm|4
(Cαα

ℓ )2
− 2 , (3.6)

which is motivated by the assumption that the birefringence power spectrum is mea-

sured well enough that the true power spectrum Cαα
ℓ is approximately well known.

One can apply ∆κ̂
(1)
ℓ to a measurement of anisotropic CMB birefringence to estimate

the excess kurtosis. If the moments α̂ℓm were a Gaussian random field, then the mean
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of this estimator would vanish (Gaussian variables have zero kurtosis), and the stan-

dard deviation would be StDev∆κ̂
(1)
ℓ =

√
20/ℓ. This spread in the estimator, even

for Gaussian statistics, is a form of cosmic variance. To assess whether the excess

kurtosis would be observable for a given model, we can compare the predicted excess

kurtosis from eq. (3.5) with the typical variation
√
20/ℓ. For the parameters shown

in fig. 3.2.2, the predicted excess kurtosis typically falls below the cosmic variance

across a wide range of multipoles. On the other hand, in models with small values of

ζ0 and ξ0, the predicted kurtosis can be larger, especially at low multipoles.

3.3 Bispectrum

A widely-used measure of non-Gaussianity in studies of CMB temperature and po-

larization anisotropies is the bispectrum, and here we turn our attention to the bire-

fringence bispectrum. We denote the first few moments of the multipole moment

coefficients α̂ℓm as

αℓ1m1 = ⟨α̂ℓ1m1⟩ (3.7a)

Pℓ1m1ℓ2m2 = ⟨α̂ℓ1m1α̂ℓ2m2⟩ (3.7b)

Bℓ1m1ℓ2m2ℓ3m3 = ⟨α̂ℓ1m1α̂ℓ2m2α̂ℓ3m3⟩ . (3.7c)

For axion-string-induced birefringence, the 1-point functions vanish αℓm = 0. If the

map is statistically isotropic and parity invariant, the 2-point and 3-point functions

can be written in terms of the angular power spectrum Cℓ and the reduced bispectrum

bℓ1ℓ2ℓ3 through the relations (59; 60)

Pℓ1m1ℓ2m2 = (−1)−m2δℓ1ℓ2δm1−m2Cℓ1 (3.8a)

Bℓ1m1ℓ2m2ℓ3m3 = hℓ1ℓ2ℓ3


 ℓ1 ℓ2 ℓ3

m1 m2 m3


 bℓ1ℓ2ℓ3 , (3.8b)
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where hℓ1ℓ2ℓ3 is a geometrical factor given by

hℓ1ℓ2ℓ3 =

√
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π


ℓ1 ℓ2 ℓ3

0 0 0


 , (3.9)

and where the second factor is a Wigner 3-j symbol. The 3-j symbols vanish unless

the multipole moment indices obey the triangle inequality |ℓ1 − ℓ2| ≤ ℓ3 ≤ ℓ1 + ℓ2

(and similarly for the other two index permutations), implying that one can think of

ℓ1, ℓ2, and ℓ3 as the lengths of the legs of a triangle. Additionally parity invariance

requires the bispectrum to vanish unless ℓ1 + ℓ2 + ℓ3 is an even integer, and this

parity condition is enforced by the geometrical factor hℓ1ℓ2ℓ3 . It is useful to define the

random variables (59):

Ĉℓ = (2ℓ+ 1)−1

ℓ∑

m=−ℓ

α̂ℓmα̂
∗
ℓm (3.10a)

b̂ℓ1ℓ2ℓ3 = h−1
ℓ1ℓ2ℓ3

ℓ1∑

m1=−ℓ1

ℓ2∑

m2=−ℓ2

ℓ3∑

m3=−ℓ3


 ℓ1 ℓ2 ℓ3

m1 m2 m3


 α̂ℓ1m1α̂ℓ2m2α̂ℓ3m3 , (3.10b)

which are unbiased estimators of the angular power spectrum and reduced bispectrum

in the sense that ⟨Ĉℓ⟩ = Cℓ and ⟨b̂ℓ1ℓ2ℓ3⟩ = bℓ1ℓ2ℓ3 .

The bispectrum is a measure of the non-Gaussianity in the birefringence map.

This can be understood as follows. If the α̂ℓm were independent Gaussian random

variables, then higher-point functions could be reduced to 1- and 2-point functions

by applying Isserlis’s theorem (Wick’s theorem). Since the 1-point functions vanish,

one would expect the 3-point functions to vanish as well implying bℓ1ℓ2ℓ3 = 0 for

a Gaussian birefringence map. Conversely, the presence of non-Gaussianity allows

the bispectrum to be nonzero, bℓ1ℓ2ℓ3 ̸= 0. However, this need not be the case, and

it is possible for a non-Gaussian birefringence map to have a vanishing bispectrum

bℓ1ℓ2ℓ3 = 0, and the non-Gaussianity only manifests itself in higher order moments

such as the 4-point functions (trispectrum, kurtosis). In particular, although axion-

string-induced birefringence is non-Gaussian, we nevertheless expect the bispectrum

to vanish. This is because any configuration of loops that would give rise to a nonzero
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3-point function has an equiprobable ‘opposite’ with all loop orientations reversed,

which cancels this contribution in the ensemble average. However, it’s important

to bear in mind that although the bispectrum may vanish as an ensemble average

bℓ1ℓ2ℓ3 = 0, its estimator must be nonzero for any given realization b̂ℓ1ℓ2ℓ3 ̸= 0. Here

we are primarily interested in evaluating the typical size of the bispectrum estimator,

quantified through its standard deviation StDev[b̂ℓ1ℓ2ℓ3 ].

To assess the typical bispectrum arising from axion-string-induced birefringence,

we have used the loop-crossing model to simulate a single realization of the birefin-

gence map and calculate the bispectrum estimator b̂ℓ1ℓ2ℓ3 . These results are presented

in fig. 3.3.1. On the left we show a visualization of b̂ℓ1ℓ2ℓ3 where the multipole moment

indices (ℓ1, ℓ2, ℓ3) are mapped to points in a three-dimensional volume. Colored dots

indicate the value of the bispectrum estimator on a log scale, and smaller values are

rendered as semi-transparent to enhance visibility. The tetrahedral shape is a conse-

quence of the triangle inequalities (|ℓ1−ℓ2| ≤ ℓ3 ≤ ℓ1+ℓ2 and permutations), since the

bispectrum estimator vanishes outside of this region due to geometrical constraints

imposed by the 3-j symbols. Additionally the parity condition requires ℓ1 + ℓ2 + ℓ3

to be an even integer, which further causes many b̂ℓ1ℓ2ℓ3 to vanish. The right panel

plots the bispectrum estimator along two rays through the tetrahedron. These rays

correspond to (1) the main diagonal of the tetrahedron along which ℓ1 = ℓ2 = ℓ3,

corresponding to the equilateral triangle form; and (2) the edge of the tetrahedron

along which ℓ1 = ℓ2 and ℓ3 = 0, corresponding to the squeezed triangle form. Due

to the symmetry properties of the 3-j symbols, the values of b̂ℓ1ℓ2ℓ3 along the three

tetrahedral edges are identical.

Several qualitative features of fig. 3.3.1 are easily understood. Since the bispec-

trum bℓ1ℓ2ℓ3 is expected to vanish for axion-string-induced birefringence, it is not

surprising to see that the bispectrum estimator b̂ℓ1ℓ2ℓ3 evaluates to a scatter of pos-

itive and negative values. For ℓ1 = ℓ2 = ℓ3 = 0 the bispectrum estimator is simply

the cube of the monopole multipole moment coefficient b̂000 =
√
4π(α̂00)

3, and using
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α̂00 ∼ 0.5 deg from fig. 3.2.1 (same simulation parameters) gives b̂000 ∼ 0.4 deg3, which

is compatible with the figure. Moving to larger ℓ, the bispectrum estimator tends to

decrease in magnitude for higher multipoles, and we quantify and discuss this behav-

ior further below. For this realization the bispectrum estimator is positive along the

three tetrahedral edges, corresponding to the squeezed triangle form, but for other

realizations they may be negative. The sign of b̂ℓ1ℓ2ℓ3 along these rays are correlated

with the random sign of the monopole α̂00. One can prove this using identities of the

Wigner 3-j symbols, but heuristically the relation is b̂ℓℓ0 ∼ ⟨|α̂ℓm|2α̂00⟩.
Repeating these simulations 5,000 times with the same LCM model parameters

(ζ0 = ξ0 = A = 1), we evalaute the bispectrum estimator for each realization and

present a sample of these results in fig. 3.3.2. We show histograms over the bispectrum

estimator for ℓ1 = ℓ2 = ℓ3 = 0, 2, and 100, which are normalized so that their

integral equals 1. These distributions appear to be centered at b̂ℓ1ℓ2ℓ3 = 0, and they

are approximately symmetric. Moreover, we have verified that the sample mean

falls like 1/
√
Nsims, as one expects for a random variable with vanishing mean. The

distributions in fig. 3.3.2 appear visibly non-Gaussian for ℓ = 0 and 2, but this is not

evidence of non-Gaussianity, since the product b̂ℓ1ℓ2ℓ3 ∼ α̂3
ℓ1ℓ2ℓ3

would be non-Gaussian

even if the individual factors α̂ℓ1ℓ2ℓ3 were Gaussian. For ℓ = 100 the distribution

appears Gaussian, and this can be understood from the central limit theorem: since

the bispectrum estimator is a sum over many terms b̂ℓ1ℓ2ℓ3 ∼
∑

α̂3, see eq. (3.10), we

expect that b̂ℓℓℓ should be approximately normally distributed at high ℓ since b̂ℓℓℓ is

a linear combination of many i.i.d. random variables. The width of the histogram

decreases for increasing multipole moment index ℓ, which is compatible with the trend

seen already in fig. 3.3.1.

Although the bispectrum vanishes upon ensemble averaging, it is nonzero for each

realization. Such fluctuations could still impact CMB polarization data, where only

one realization is available. This observation motivates us to evaluate the standard

deviation of the bispectrum estimator StDev[b̂ℓ1ℓ2ℓ3 ] = [⟨b̂2ℓ1ℓ2ℓ3⟩ − ⟨b̂ℓ1ℓ2ℓ3⟩2]1/2. If the
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birefringence map were Gaussian, the 6-point function ⟨b̂2ℓ1ℓ2ℓ3⟩ ∼ ⟨α̂6
ℓm⟩ could be

reduced to products of 2-point functions using Isserlis’s theorem. By doing so we find

StDev
[
b̂ℓ1ℓ2ℓ3

]
if α̂ℓm are Gaussian = |hℓ1ℓ2ℓ3|−1

√
Cℓ1Cℓ2Cℓ3

×
[
1 + 2δℓ1ℓ2δℓ2ℓ3 + δℓ2ℓ3 + δℓ1ℓ2 + δℓ3ℓ1 + 6 δℓ10 δℓ20 δℓ30

+ (2ℓ1 + 1) δℓ1ℓ2 δℓ30 + (2ℓ2 + 1) δℓ2ℓ3 δℓ10 + (2ℓ3 + 1) δℓ3ℓ1 δℓ30

]1/2
,

(3.11)

where Cℓ is the angular power spectrum, and we assumed that the multipole in-

dices obey the triangle inequality and parity condition; variations of this formula

(bispectrum covariance) appear in refs. (61–64). For a scale-invariant power spec-

trum ℓ(ℓ + 1)Cℓ is independent of ℓ, and one expects to find StDev[b̂ℓ1ℓ2ℓ3 ] ∝ ℓ−7/2

in the equilateral configuration and a larger ℓ−2 in the squeezed configuration. We

are interested in whether departures from this scaling can arise from the inherent

non-Gaussianity of axion-string-induced birefringence.

In fig. 3.3.3 we show the sample standard deviation of the bispectrum estimator

StDev[b̂ℓ1ℓ2ℓ3 ], calculated using the same loop-crossing model parameters as in the

previous figure, ζ0 = ξ0 = A = 1. The purple crosses and boxes correspond to

axion-string-induced birefringence, and they were calculated using our simulations;

the black dots correspond to Gaussian birefringence, and they were calculated us-

ing eq. (3.11). To evaluate Cℓ in (3.11) we performed 1,000 LCM simulations and

averaged over the power spectrum estimator Ĉℓ for each realization, which is approx-

imately scale invariant for ℓ ≲ 100. From the figure, it can be seen that the standard

deviation of the bispectrum tends to track closely to the expectation for Gaussian

birefringence, particularly at higher multipoles with ℓ ≳ 5. This explains why the

bispectrum tends to be larger for the squeezed configuration as compared with the

equilateral configuration, and why they decrease toward larger ℓ while approximately

tracking power laws. For low multipoles ℓ ≲ 4 the difference between the bispec-

trum standard deviation and the Gaussian expectation can be significant, reaching

a maximum fractional difference of approximately 80% for ℓ1 = ℓ2 = 1 and ℓ3 = 0.

Since the bispectrum tends to be larger than the Gaussian expectation across a range
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of low multipoles, correlated measurements could be used to search for evidence of

non-Gaussian axion-string-induced birefringence.

3.4 Conclusion

If a network of axion strings is present in the Universe after recombination, then a

coupling of the axion-like particles to electromagnetism will induce anisotropic cosmic

birefringence. The birefringence angle will vary across the sky tracing the ‘shadow’

of the cosmic string network with sharp edges and loop-like features. The statistics

of this birefringence map are therefore non-Gaussian, since a Gaussian random field

would resemble featureless noise. In this work we have used two familiar measures of

non-Gaussianity, kurtosis and bispectrum, to quantify the departure from Gaussian

statistics.

Kurtosis is calculated from the fourth moment of the birefringence rotation an-

gle; roughly κ ∼ ⟨α̂4⟩/⟨α̂2⟩2. For Gaussian statistics, four-point functions are equal to

products of two-point functions, and we define the excess kurtosis ∆κ̂ℓ to measure the

deviation from Gaussian statistics. We use a combination of numerical simulation, in

a phenomenological framework called the loop-crossing model, and analytical approx-

imation to evaluate the excess kurtosis across a range of angular scales (with multiple

index ℓ = 0 to 100) and for a range of string network model parameters (ζ0, ξ0, and

A). We find that excess kurtosis tends to be positive, order 0.1 to 10 at the largest

angular scales (depending on model parameters), and decreasing toward smaller an-

gular scales. To understand how the excess kurtosis varies with ℓ and depends on the

model parameters, we have developed a simplified analytical model that leads to the

approximation for ∆κ̂ℓ provided in eq. (3.5). This formula agrees remarkably well

with the scaling relations inferred from simulations. To assess observability, we have

calculated the cosmic variance of an excess kurtosis estimator assuming α̂ to be a

Gaussian random field and perfect knowledge of the power spectrum Cαα
ℓ . For small

values of ζ0 and ξ0, the excess kurtosis arising from axion-string induced birefringence
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can be larger, on average, than the uncertainty from cosmic variance. These estimates

indicate that the signal is detectable in principle, but likely challenging in practice.

The bispectrum is defined as the third moment of the birefringence rotation angle

at different angular scales; roughly b ∼ ⟨α̂1α̂2α̂3⟩. For axion-string-induced birefrin-

gence we expect the bispectrum to vanish as an ensemble average, but it must be

nonzero in any given realization, and our analysis focuses on calculating its standard

deviation. Using numerical simulations of the loop-crossing model, we evaluate the

reduced bispectrum b̂ℓ1ℓ2ℓ3 for a range of angular scales from ℓi = 0 to 100. We find

that the bispectrum tends to be largest for the ‘squeezed’ triangle form (ℓ1 = 0,

ℓ2 = ℓ3 and permutations) and relatively smaller in the ‘equilateral’ triangle form

(ℓ1 = ℓ2 = ℓ3). For both cases the typical bispectrum decreases toward larger ℓi, ap-

proximately tracking a power law. We discuss how these general trends would arise

even if the birefringence rotation angle followed Gaussian statistics. For the model pa-

rameters that we explored numerically here (ζ0 = ξ0 = A = 1), the typical bispectrum

tracks the Gaussian expectation, and the largest difference occurs for ℓ1 = ℓ2 = 1 and

ℓ3 = 0 (and permutations) where the fractional difference is approximately 80%. This

deviation suggests that an anomalously large bispectrum would be consistent with

axion-strings, although additional information such as a measurement of the power

spectrum would be needed to claim evidence of axion strings from CMB polarization.

The work presented here serves to better characterize the cosmological signatures

of an axion string network present in the Universe after recombination. If evidence for

anisotropic birefringence is detected in CMB polarization measurements using two-

point statistics, such as EB cross-correlation, the higher-moment statistics studied

here will prove valuable to discriminate across different possible new physics sources

of birefringence. For instance, at the level of the power spectrum the parameters

of axion-string-induced birefringence exhibit a degeneracy; the signal is proportional

to A2ξ0 where the anomaly coefficient A quantifies the strength of the axion-photon

coupling, and the loop density parameter ξ0 controls the number of axion string loops
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per Hubble volume. A detection of anisotropic birefringence and a measurement of its

power spectrum would not provide sufficient information to discriminate between A
and ξ0. However, in general this degeneracy can be broken by higher-point statistics

(27). For example, eq. (3.5) reveals that the excess kurtosis ∆κ̂ℓ is insensitive to A and

goes inversely with ξ0. Consequently, with sufficient information it becomes possible

to independently determine the properties of the axion string network, parametrized

here by ζ0 and ξ0, and the fundamental parameters of the new physics, parametrized

by the anomaly coefficient A as well as the axion mass ma.
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Figure 3.2.1 : Histogram showing distributions over the real part of the multipole

moment coefficients α̂ℓm for axion-string-induced birefringence. These distributions

were generated using 150,000 realizations of birefringence maps simulated in the loop-

crossing model with ζ0 = 1, ξ0 = 1, and A = 1. In each panel the x-axis is the value

of Re α̂lm in degrees, µ̂ℓm and σ̂ℓm are the sample mean and standard deviation of

Re α̂ℓm, and ∆κ̂ℓm is the excess kurtosis of α̂ℓm through eqs. (3.2) and (3.3). Black

dashed curves show a Gaussian distribution with the same mean and variance as the

histogram.
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Figure 3.2.2 : Excess kurtosis of axion-string-induced birefringence for a range of

multipole moments. We show the average excess kurtosis ∆κ̂ℓ for multipole moments

with index ℓ ranging from 1 to 100. The excess kurtosis is calculated from simulated

birefringence maps that were created using the loop-crossing model with ξ0 = 1,

A = 1, and three values of the loop-length parameter ζ0. The number of realizations

is 150,000 for ζ0 = 1, 40,000 for ζ0 = 0.316, 62,000 for ζ0 = 0.1, and 150,000 for

ζ0 = 10. The curves approximately follow broken power law scalings for small and

large multipoles.
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Figure 3.3.1 : A single realization of the bispectrum estimator b̂ℓ1ℓ2ℓ3 calculated

from a simulated birefringence map using the loop-crossing model with parameters

ζ0 = ξ0 = A = 1. For other values of A the bispectrum estimator would scale as

∝ A3. Left: Colored dots indicate values of the bispectrum estimator for multipole

moment indices ℓ1, ℓ2, ℓ3 ranging from 0 to 100 in steps of 10. Right: Values of the

bispectrum estimator along the edge of the tetrahedron where ℓ1 = ℓ2 and ℓ3 = 0

corresponding to a ‘squeezed’ triangle (cross markers) and along the main diagonal

where ℓ1 = ℓ2 = ℓ3 corresponding to an ‘equilateral’ triangle (square markers).
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Figure 3.3.2 : Distributions of bispectrum estimators for ℓ1 = ℓ2 = ℓ3 = 0 (left), 2

(middle), and 100 (right). We have used 5,000 simulations of the loop-crossing model

with parameters ζ0 = ξ0 = A = 1. For other values of A the bispectrum estimator

would scale as ∝ A3.
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Figure 3.3.3 : Top: Standard deviation of the birefringence bispectrum estimator

StDev[b̂ℓ1ℓ2ℓ3 ]. We show all values that are nonzero for ℓ ≤ 20; no binning was

performed. Purple markers denote results from axion-string-induced birefringence,

calculated as the sample average of 5,000 LCM simulations for the model with pa-

rameters ζ0 = ξ0 = A = 1. Crossed markers correspond to the squeezed triangle

form with ℓ1 = ℓ2, ℓ3 = 0, and square markers correspond to the equilateral triangle

with ℓ1 = ℓ2 = ℓ3. Black dots indicate the expected bispectrum standard deviation

for Gaussian birefringence, given by eq. (3.11). Bottom: The fractional difference be-

tween the bispectrum standard deviation and the expectation for Gaussian statistics.
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Appendix

3.A Analytical analysis for kurtosis

To develop an analytical understanding of the kurtosis arising in axion-string-induced

birefringence, we provide here a simplified description that is analytically tractable.

We first consider the monopole α̂00 and then extend this analysis to higher multipoles

with ℓ > 0.

3.A.1 Monopole

Consider the monopole of the birefringence map

α̂00 =

∫
d2nY ∗

00(n) α̂(n) =
1√
4π

∫
d2n α̂(n) . (3.12)

In the loop-crossing model, the birefringence map α̂(n) is built up from random

overlapping string loops of different sizes and orientations, distributed isotropically

across the sky. Photons propagating through the disk encircled by a loop experience a

random birefringence, which accumulates with multiple loop crossings. For simplicity

we suppose here that every loop crossing leads to a statistically equivalent shift in

the monopole, ∆α̂00 = +C or −C with equal probability. More realistically in the

loop-crossing model, larger loops contribute more and smaller loops less, and the

loop’s orientation affects the solid angle it spans on the sky, but these effects are

ignored for this simplified analysis. Note that the location of the loops on the sky

is irrelevant for the monopole. We also suppose that the number of loops giving

this contribution, denoted as N̂loops is random and Poisson distributed with intensity

parameter N loops. The quantity N loops is calculable within the loop-crossing model

in terms of the properties of the string network. These simplifications allow the
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monopole to be written as

α̂00 = C

N̂loops∑

i=1

Ŵi

Ŵi ∼ −1 or 1 with equal probability

N̂loops ∼ Poisson(N loops) .

(3.13)

This is an example of a hierarchical random model, where the number of random

variables (loop crossings) is itself a random variable.

We are interested in the moments of α̂00, which give the kurtosis. It is useful

to recognize that (Ŵi + 1)/2 is a Bernoulli(1/2) random variable, taking values 0

and 1 with equal probability. The sum over a sequence of n i.i.d. Bernoulli(1/2)

random variables is a binomial(n, 1/2) random variable. This motivates us to define

Ŷn =
∑n

i=1(Ŵi + 1)/2 and write the monopole as

α̂00 = C
(
2ŶN̂loops

− N̂loops

)
. (3.14)

This expression can be used to calculate the kurtosis of α̂00 analytically using the fact

that for any two random variables x̂ and ŷ, expectation values can be calculated as

(65)

E(x̂) = E
[
E(x̂|ŷ)

]
(3.15)

so long as the expectation values exist. For example, the first moment is calculated

as follows:
1

C
E(α̂00) = 2E

[
ŶN̂loops

]
− E(N̂loops)

= 2E
[
E(ŶN̂loops

|N̂loops)
]
−N loops

= 2E
[
N̂loops/2

]
−N loops

= 0 .

(3.16)

Repeating this procedure for E(α̂2
00), and E(α̂4

00) we find

E(α̂2
00) = C2N loops (3.17)

E(α̂4
00) = C4

[
3N

2

loops +N loops

]
. (3.18)
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The corresponding excess kurtosis is

∆κ0 = κ00 − 3 =
E(â400)

E(â200)
2
− 3 = 1/N loops , (3.19)

which is the result quoted in the main text.

3.A.2 Higher multipoles

We suppose that the monopole relation in eq. (3.19) extends to higher multipoles as

∆κℓ ∼ 1/N ℓ , (3.20)

where N ℓ denotes the average number of loops on an angular scale ∼ π/ℓ. By calcu-

lating N ℓ in the loop-crossing model, we obtain an expression for the angle-averaged

excess kurtosis ∆κℓ in terms of the multipole index ℓ and the string network model

parameters.

First, in the loop-crossing model, the typical length of loops in the network grows

with time to track the growing Hubble scale. At redshift z, the typical angular scale

of the loops is (23)

δθ ∼ π/ℓ ∼ 2λζ0
a(z)H(z)s(z)

, (3.21)

where λ = 0.3 accounts for the random orientation of the loops, and in a matter-

dominated cosmology: a(z) ∝ (1 + z)−1 is the scale factor, H(z) ∝ (1 + z)−3/2 is the

Hubble parameter, and s(z) =
∫ z

0
dz′/a0H(z′) is the comoving distance to redshift z.

Solving this relation for z gives

zℓ ∼
λζ0ℓ(2π + λζ0ℓ)

π2
, (3.22)

which represents the redshift at which loops with angular scale π/ℓ were present in

the network. In the loop-crossing model, the average comoving number density of

loops in the network at redshift z is taken to be

n(z) =
ξ0a(z)

3H(z)3

2πζ0
. (3.23)
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Integrating over a spherical shell of redshifts zℓ < z < zℓ +∆z gives

N ℓ =

∫ zℓ+∆z

zℓ

dz 4πs2(z)
ds

dz
n(z)

≈ ∆z 4πs2(zℓ)
1

a0H(zℓ)

ξ0a(zℓ)
3H(zℓ)

3

2πζ0

∼ 8λ2ζ0ξ0ℓ
2∆z

(π + λζ0ℓ)2
,

(3.24)

which represents the average number of loops with angular extent π/ℓ. If the excess

angle-averaged kurtosis can be estimated as ∆κℓ ∼ 1/N ℓ, then we have

∆κℓ ∼
ζ0
8 ξ0

(
1 +

π

λζ0ℓ

)2

(3.25)

where we have taken ∆z = 1. This expression matches the result quoted in the main

text.
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Chapter 4

Extracting Axion String Network Parameters from
Simulated CMB Birefringence Maps using

Convolutional Neural Networks

Abstract

Axion-like particles may form a network of cosmic strings in the Universe today

that can rotate the plane of polarization of cosmic microwave background (CMB)

photons. Future CMB observations with improved sensitivity might detect this axion-

string-induced birefringence effect, thereby revealing an as-yet unseen constituent

of the Universe and offering a new probe of particles and forces that are beyond

the Standard Model of Elementary Particle Physics. In this work, we explore how

spherical convolutional neural networks (SCNNs) may be used to extract information

about the axion string network from simulated birefringence maps. We construct

a pipeline to simulate the anisotropic birefringence that would arise from an axion

string network, and we train SCNNs to estimate three parameters related to the

cosmic string length, the cosmic string abundance, and the axion-photon coupling.

Our results demonstrate that neural networks are able to extract information from a

birefringence map that is inaccessible with two-point statistics alone (i.e., the angular

power spectrum). We also assess the impact of noise on the accuracy of our SCNN

estimators, demonstrating that noise at the level anticipated for Stage IV (CMB-S4)

measurements would significantly bias parameter estimation for SCNNs trained on

noiseless simulated data, and necessitate modeling the noise in the training data.

Notes about this project: This chapter is from a paper I wrote with Mustafa

A. Amin and Andrew J. Long that is available on the arXiv preprint server at
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2411.05002 [astro-ph.CO] (1). In chapter 3 I studied certain non-Gaussian statis-

tical properties of LCM birefringence maps, namely their kurtosis and bispectrum.

These statistics are conceptually easy to interpret, but may not be optimal at en-

coding information about LCM parameters. We were interested to know if a neural

network could be trained to do a better job estimating LCM parameters by learning

complicated statistical features in LCM birefringence maps.

4.1 Introduction

Precision measurements of the cosmic microwave background (CMB) radiation yield

a wealth of data with which cosmologists are able to infer the constituents of the

cosmos (2). The CMB’s statistical properties provide compelling evidence for the

presence of new physics, beyond the Standard Model of Particle Physics, such as

dark matter and dark energy. The next generation of CMB telescopes is expected to

reach unprecedented levels of precision, particularly in regard to polarization mea-

surements (3). These measurements will provide an exciting opportunity to probe

signatures of additional beyond the Standard Model physics that are inaccessible

with current sensitivity levels (4).

In this work, we are interested in the cosmological signatures of hypothetical

axion-like particles (ALPs) coupled to electromagnetism. We assume the standard

Chern-Simons interaction, which takes the form

Lint = −1

4
gaγγaFµνF̃

µν , (4.1)

where gaγγ is the axion-photon coupling parameter, a(x) is the pseudoscalar axion

field, Fµν(x) is the electromagnetic field strength tensor, and F̃ µν(x) is the dual tensor.

The coupling depends on the fine structure constant αem ≈ 1/137, the axion decay

constant fa, and the electromagnetic anomaly coefficient A as gaγγ = Aαem/(4πfa).

ALPs arise naturally in string theory as a consequence of the additional compact

spatial dimensions (5; 6). In these theories, instanton effects lift the ALP potential
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and their exponential sensitivity leads to a vast range of ALP masses spanning from

nearly the Planck scale to far below the current Hubble scale H0 ≈ 10−33 eV (7; 8).

Such ALPs are also expected to interact with electromagnetism at a strength that

can possibly be probed with astrophysical and cosmological observations (8).

One of the most well-studied cosmological signatures of ALPs is cosmic birefrin-

gence. As a linearly-polarized electromagnetic wave propagates through a varying

ALP field, the plane of polarization is rotated by an angle α ∝ gaγγ∆a that depends

on the Chern-Simons coupling and the change in the ALP field (9–14). Measuring

cosmic birefringence is an important science driver for current and future CMB experi-

ments (3; 4; 15). Measurements of isotropic and anisotropic birefringence in upcoming

CMB surveys are expected to improve by at least an order of magnitude (3; 16; 17).

An exciting development in recent years is that a measurement of isotropic birefrin-

gence in CMB data has been reported with ≈ 3σ statistical significance (18–21). See

ref. (22) a review of recent developments in the measurement of isotropic birefrin-

gence.

Various studies have explored the implications of axion-induced birefringence for

cosmologically distance sources of polarized light like the CMB. While a homogeneous

ALP field could induce isotropic cosmic birefringence (10; 12), there is theoretical

motivation to consider configurations such as string and domain wall networks that

can form from phase transitions in the early Universe (23). A remarkable feature of

birefringence from string loops is that it does not directly depend on string tension

and arises even if the string network is a subdominant component of the the total

energy budget of the universe (24). Moreover, the anisotropic birefringence signal

from a network, if detected, is likely to be more robust against calibration errors that

might affect isotropic birefringence measurements.

Dynamics of topological axion defects and the birefringence induced by them have

been studied in refs. (25; 26). CMB birefringence power spectra and non-Gaussian

signatures from axion strings have been computed in refs. (24; 27; 28). Constraints
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on axion-string parameters using published birefringence power spectra have been

derived in refs. (29; 30). The potential of using radio emissions from spiral galaxies

to probe birefringence caused by axion strings has been explored in ref. (31). A

tomographic constraint on anisotropic birefringence generated at reionization was

provided in ref. (32; 33). The birefringence from axion domain walls has been studied

in refs. (34–37) and axion dark energy in ref. (38).

Recent advances in statistical learning and computing have made it possible to

harness the power of neural networks in cosmology (39–47). In particular, spherical

convolutional neural networks (SCNNs) designed for data with a spherical topol-

ogy have been developed, such as those implemented in the Python package Deep-

Sphere (48; 49). These networks have demonstrated capability in distinguishing

cosmological models using simulated weak lensing all sky maps (50), and have been

used for cosmological parameter inference in KiDS-1000 weak lensing maps (51).

In this work we explore how SCNNs can be used to estimate axion string network

parameters from simulated all sky maps of CMB birefringence. To this end, we train

SCNNs to estimate the parameters of a phenomenological model known as the loop-

crossing model (LCM) (27), given simulated noiseless CMB birefringence maps. In

previous works, measured birefringence power spectra have been compared against

the power spectrum predicted from the LCM (29; 30), with the tightest constraint

yielding A2ξ0 ≲ 0.93 at 95% confidence level. However, a fundamental limitation of

this approach is that some model parameters are degenerate at the level of the power

spectrum since in the LCM, the birefringence power spectrum is directly proportional

to A2ξ0. The LCM parameter ξ0 is a phenomenological parameter that describes the

energy density of the string network in a Hubble volume. This means that inference

using only the power spectrum is fundamentally unable to independently measure A
and ξ0. To address this issue, the use of higher order statistics such as the trispec-

trum and wavelet scattering transform have been explored and were shown to break

the degeneracy between A and ξ0 (28; 52). The ability for SCNNs to learn statis-
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tical properties of image data motivates the exploration of this tool for axion string

parameter estimation.

Our strategy in this work is to train three spherical convolutional neural networks

to estimate the LCM parameters ζ0, A, and ξ0 using realizations of axion-string

induced birefringences maps as training data. We then assess their performance by

using approximate Bayesian computation to sample the posterior distributions. This

pipeline is illustrated in fig. 4.1.1. Our results demonstrate that neural networks are

a powerful tool that can be used to look for evidence of cosmic axion strings in future

CMB polarization measurements. In addition to considering noiseless simulations, we

explore the effect that adding noise to the maps has on the estimates produced by

these neural networks.

4.2 Mock birefringence data simulation procedure

In this section we discuss how we generated mock data of the anisotropic birefringence

arising from an axion string network by employing Loop Crossing Model (LCM)

simulations. The LCM (53) treats all axion strings in the network to be circular

planar loops whose positions are statistically homogeneous, whose orientations are

statistically isotropic, and whose mean abundance and typical size evolve to scale

with the cosmological expansion. The LCM is informed by numerical 3D lattice

simulations of axion string network dynamics (54–63), which reveal that the network

scales with the cosmological expansion (up to a possible logarithmic correction that

remains under debate).

In our implementation, the LCM has four parameters: a size parameter ζ0 related

to the radius of string loops, an abundance parameter ξ0 related to the number of

string loops, the mass parameter ma related to the string network collapse, and an

intensity parameter A related to the amplitude of birefringence. At time t we assume

that all loops in the network have the same (physical) radius r(t) = ζ0 dH(t), which

grows with time to scale with the increasing Hubble distance dH(t) = 1/H(t). The
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Parameter Prior

log10 ζ0 U
(
log10(0.3), log10(3)

)

log10A U
(
log10(0.1), log10(1)

)

log10 ξ0 U
(
log10(3), log10(30)

)

Table 4.2.1 : Priors used in inference and mock-data generation. The logarithms are

drawn uniformly from the ranges shown.

average number density of loops also decreases as n(t) = ξ0d
−3
H (t)/(2πζ0) to maintain

scaling. A logarithmic deviation from scaling would correspond to a growth in ξ0 by a

negligible factor between recombination and today, which we neglect. The axion mass

ma controls the time when the string network develops domain walls and collapses,

through the relation ma ∼ 3H(t) (27). In this work we restrict ourselves to masses

ma ≲ 4× 10−33 eV so that the string networks survive at least until today. Photons

passing through the disk enclosed by a loop develop a birefringence rotation angle of

∆α = ±Aαem where A is the electromagnetic anomaly coefficient, αem ≈ 1/137 is the

electromagnetic fine structure constant, and the sign depends on the loop’s winding

number and orientation (24). As a photon propagates though multiple loops, its

birefringence accumulates α =
∑

∆α. Fig. 4.2.1 is a graphical illustration of the

LCM and induced CMB birefringence; we indicate photons propagating through a

network of circular planar string loops, shown in three redshift slices. In the bottom

half of fig. 4.2.1 we show mollweide projections of the cumulative birefringence map

from z = 1100 to the indicated redshift.

The procedure that we employ to create mock data is the following.

1. Draw a set of LCM model parameters ζ0, A, and ξ0 from the prior distribu-

tions in tab. 4.2.1. We set ma = 0. These priors are informed by theoretical

expectations for the values these parameters may take. For example A is a sum

over the squared electromagnetic charge of particles in the theory, so A is not
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expected to be much smaller than an O(1) number. This partially motivates us

to take our prior to have support in the region A ∈ [0.1, 1].

2. Select a HEALPix resolution parameter. For all of the work present in this

article, we take Nside = 128 corresponding to Npix = 196, 608 pixels. This

corresponds to an angular scale of approximately 0.5 degrees.

3. Calculate the average number of loops in the network ⟨Nloops⟩ by using numerical

methods to evaluate the integral (27)

⟨Nloops⟩ = 2
ξ0
ζ0

∫ zcmb

0

dz H2(z)(1 + z)−3 s2(z) . (4.2)

Here zcmb = 1100 is the fiducial redshift at recombination, s(z) ≡
∫ z

0
H−1(z′) dz′

is the comoving distance from the observer (at z = 0) to redshift z, and H(z) ≡
H0

√
Ωr (1 + z)4 + Ωm (1 + z)3 + ΩΛ is the Hubble parameter at redshift z. We

assume an ΛCDM cosmology with Ωr = 9× 10−5, Ωm = 0.3, and ΩΛ = 0.7.

4. Choose the number of loops in this realization by sampling N̂loops ∼ Poisson(⟨Nloops⟩).

5. To populate the network with loops, for each loop we generate a random position

drawn uniformly from a 2-sphere, a random orientation drawn uniformly from

a 2-sphere, a random winding number drawn uniformly from ±1, and a random

redshift z drawn from the probability density (see app. 4.A)

p(z) =
H2(z)(1 + z)−3 s2(z)∫ zcmb

0
dz′H2(z′)(1 + z′)−3s2(z′)

(4.3)

with support only on the interval z ∈ (0, zcmb). A derivation of eq. (4.3) can

be found in app. 4.A. Once a random z is chosen, the circular loop’s comoving

radius is taken to be rco = ζ0(1 + z)/H(z).

6. Using a HEALPix discretization scheme (64), for each loop find the pixels whose

line of sight vectors pass through the interior of the loop. At these pixels

increment their values by ∆α = ±Aαem.
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The result of this procedure is a spatially-discretized birefringence map αi = α(ni)

that takes values on each of the pixels ni.

4.3 Neural network architecture and training

Our mock data takes the form of an all-sky birefringence map, having a spherical

topology. We therefore choose to use a neural network architecture which appro-

priately accounts for the geometry of the data. To this end, we use the Deep-

SpherePython package, which is a library for creating SCNNs (48; 49). Previous

work has applied DeepSphereto cosmological mock data with HEALPix (50); and

to KiDS-1000 weak lensing maps for parameter inference (51).

We train three neural networks, such that each of them is an estimator for one of

the three LCM model parameters. Rather than directly learning ζ0, ξ0, and A, we

find that it is advantageous for the networks to instead learn

Z ≡ log10(ζ0) , A ≡ log10(A2ξ0) , and X ≡ log10(ξ
2
0/A) . (4.4)

This is the case for two reasons. First, the birefringence angular power spectrum in

the LCM is directly proportional to A2ξ0 and its shape is controlled by ζ0 (53). This

means that power spectrum information can be used to infer these parameters. On

the other hand, ξ20/A is orthogonal to A2ξ0 in the (log10 ξ0, log10A) plane so inferring

this combination of parameters requires information beyond the power spectrum.

Hence, training a neural network to estimate ξ20/A will allow us to assess whether

or not information beyond the power spectrum is being recovered. Second, since

A2ξ0 and ξ20/A vary over several orders of magnitude, and because we care more

about the neural networks’ ability to provide accurate estimates to within an order

of magnitude, training them to learn the base-10 logarithms of these parameters is a

direct way to enforce this.

We use the architectures shown in tables 4.B.1, 4.B.2, and 4.B.3 which can be

found in app. 4.B. We use 3 convolutional layers for ζ0 with a total of 9,881 param-



113

eters since we found that this was sufficient for good performance on the range of

parameters allowed by our priors (see tab. 4.2.1). For the A and X networks we

used deeper networks with 6 to 8 convolutional layers and 20,113 to 3,566,273 train-

able parameters respectively. The convolutions themselves are implemented using

DeepSphere’s ChebyshevConv layers which approximate the convolution kernels as

a Chebyshev polynomial expansion in terms of the discrete Laplacian operator as

explained in refs. (49; 65). These convolutions are approximately equivariant under

rotations of the input map, i.e., a rotation of the map followed by a convolution is the

same as a convolution followed by a rotation. After all the convolutions we use global

average pooling (66) to ensure that the outputs of the neural networks are invariant

under rotations of the input map.

For our mock data set we generate 20,000 axion-string-induced birefringence maps

(with HEALPix pixelization) by performing repeated LCM simulations using the

parameters ζ0, ξ0, and A sampled from the priors in tab. 4.2.1 and by following the

procedure described in sec. 4.2. These data are then split into training and validation

sets with a ratio of 80:20. Finally, we train three neural networks to provide estimators

for Z, A, or X using a mean-squared-error loss (67). Training was performed using

the Adam optimizer (68) with a learning rate schedule starting at 0.005, which decays

by 4% every epoch. Training is stopped when the validation loss does not improve

by at least 1× 10−5 over 8 consecutive epochs. We define the trained neural network

as the set of network parameters with the lowest validation loss.

To illustrate the performance of the three networks, we show an example in

fig. 4.3.1. For this example, we take the LCM model parameters to be ζ0 = 1,

A = 0.316, and ξ0 = 10, which correspond to Z = 0, A ≈ 0, and X ≈ 2.5. We

generate four pixelated birefringence maps α(ni), which are random realizations of

the LCM simulation procedure. These maps are then passed to the three SCNNs,

which have already been trained, yielding estimates Ẑ, Â, and X̂. In general we will

use hatted variables to denote the outputs of the SCNNs, and unhatted variables to
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denote the LCM model parameters. We emphasize that the neural network is de-

terministic, such that the same map α(ni) always yields the same estimate, Ẑ for

example. However, the procedure of generating the mock data via the LCM simula-

tion is stochastic, so a single set of LCM model parameters generates many possible

realizations α(ni). In this example, one can see that two of the SCNNs are perform-

ing very well; the Ẑ and Â estimates are close to the input model parameters Z and

A. The third SCNN performs moderately well; the estimate X̂ differs from the input

parameter X = log10(ξ
2
0/A) = 2.5 by as much as ∆X = 0.44, which corresponds to a

factor of 2.8 in ξ20/A. We discuss the SCNN performance further in the next section,

where we also provide quantitative measures of success.

4.4 Validation of neural network performance

In order to assess the performance of the neural networks to provide accurate and

precise estimates of the LCM model parameters, we perform the following two tests.

To quantify the networks’ accuracy, we directly compare SCNN parameter estimators

with true LCM model parameters across a 2D slice of the parameter space. To

quantify the networks’ precision, we employ approximate Bayesian computation to

sample the posterior distribution and infer the spread in the network output. In the

following subsections, we discuss both approaches.

4.4.1 Estimator performance on known inputs

To get a sense of the reliability of the parameter estimates from our neural networks

we want to quantify deviations from known inputs. This can be achieved by scanning

the parameter space and calculating the average error at each point. To do this

calculation we perform 992,600 draws of the LCM model parameters ζ0, ξ0, and A
from the priors in tab. 4.2.1, and calculate the corresponding Z, A, and X using

eq. (4.4). For each draw we do an LCM simulation and pass the mock data to the

neural networks which return parameter estimates Ẑ, Â, and X̂. We then divide the
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(A,X) plane into 50× 50 = 2500 bins. In each bin we compute the error magnitude

defined as

error magnitude = average of
√
(Â− A)2 + (X̂ −X)2 , (4.5)

where the average is with respect to the samples in the bin. Some bins have no

samples, because they are excluded by our priors; other bins contain between 65 and

809 samples.

The results of this analysis are shown in fig. 4.4.1. The color heat map shows

the error magnitude in each bin. The white regions have no samples, because they

are outside of our prior range, as indicated by the labeled values of A and ξ0. The

arrows indicate the displacement from the true value to the average estimated value.

For example, an arrow pointing upward means that the neural networks tend to

overestimate the value of X but are relatively accurate for A.

This figure offers several indications of the performance of the SCNNs. The error

magnitude is typically smaller than 0.4 across most of the (A,X) parameter space,

corresponding to a factor of 100.4 ≈ 2.5 in the parameters A2ξ0 and ξ20/A. However,

the error predominantly arises from ξ20/A, as indicated by the mostly-vertical arrows.

This poorer performance in the X = log10(ξ
2
0/A) estimator was expected, and we

discuss it further in sec. 4.4.3.

Notice that the region of parameter space in which X is large tends to have larger

error magnitude (i.e., warmer colors). For larger ξ0 the error is expected to grow,

because the network contains a greater number of loops. The birefringence map

generated by many overlapping loops appears increasingly like a Gaussian random

field (28), and obscures information about the string network. This leads to a larger

error magnitude.

The performance of the network to accurately estimate X is particularly poor at

the upper-left boundary. This is indicated by the bright orange cells on the heat map

and the long downward arrows. Here the error magnitude reaches 0.8 corresponding

to underestimating ξ20/A by a factor of 100.8 ≈ 6.3.
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The X neural network tends to overpredict when the input value is small (i.e.,

upward arrows near the bottom of the figure) and underpredict when the input value

is large (i.e., downward arrows near the top). Consequently, there is a region of

parameter space where the predictions are particularly accurate – this is the very dark

region of the plot. If the network were trained again using a new set of randomly-

generated training data, we anticipate that the general trends seen in fig. 4.4.1 would

persist, while the particular values of the error magnitude would change.

4.4.2 Approximate Bayesian computation

We designed the SCNNs to provide a single estimator of the LCM model parameters

(rather than a probability density). In this section, we discuss how approximate

Bayesian computation (ABC) (69) can be employed to ascribe an uncertainty to those

estimates. More formally, the uncertainty of the network is quantified by the posterior

distribution p(θ|θ̂), where θ ≡ (Z,A,X) are the parameters and θ̂ ≡ (Ẑ, Â, X̂) are the

estimates of the parameters. To obtain samples from p(θ|θ̂) we use ABC, following

the procedure outlined below.

1. Define a distance measure between parameter estimates θ̂ and a target value

θ̂target as

ρ(θ̂, θ̂target) =

√
(Ẑ − Ẑtarget)2 + (Â− Âtarget)2 + (X̂ − X̂target)2 .

2. Pick a tolerance ϵ. We use ϵ = 0.07, which was found to be sufficient for

convergence.

3. Sample LCM model parameters ζ0, A, and ξ0 from the priors in tab. 4.2.1, and

compute the corresponding θ = (Z,A,X) using eq. (4.4).

4. Generate a pixelated LCM birefringence map α(ni) following the procedure in

sec. 4.2.

5. Pass the map through each neural network to obtain estimates θ̂ = (Ẑ, Â, X̂).
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6. Keep the sampled θ if ρ(θ̂, θ̂target) < ϵ.

7. Repeat steps 3− 6 until a desired number of accepted samples is reached.

Fig. 4.4.2 shows the outcome of this procedure for a representative parameter

point. We show samples from the posterior distribution for θ̂target = (0, 0, 2.5), which

corresponds to ζ̂0 = 1, ξ̂0 = 10, and Â = 0.316. The three lower subplots show the 2D

marginal posteriors for each pair of parameters, and the three upper subplots show

the 1D marginal posterior (black histogram) and prior (gray dashed histogram) of

each individual parameter. The red cross indicates the target value θ̂target.

From the 2D posteriors, we can assess possible correlations between estimator

errors. No significant correlations are observed. Since the networks are trained inde-

pendently we expect uncorrelated errors.

From the 1D posteriors, we can assess the SCNNs’ uncertainties. For each of the

three estimators, the posteriors are approximately centered at the target value, which

is an indication of the SCNNs’ accuracy. The posteriors have standard deviations

of σZ = 0.03, σA = 0.014, and σX = 0.3. This means that the ζ0 parameter is

typically within a factor of 100.03 ≈ 1.07 of the target value; the A2ξ0 parameter is

typically within a factor of 100.014 ≈ 1.03 of the target value; and the ξ20/A parameter

is typically within a factor of 100.3 ≈ 2 of the target value. For ζ0 and A2ξ0 the

SCNNs are quite precise with uncertainties below 10% (for this example). For ξ20/A
the uncertainty is much larger. Nevertheless, all three 1D posteriors, even ξ20/A, have

standard deviations that are smaller than the prior distribution’s as evidenced by the

black histograms being narrower than the grey lines in fig. 4.4.2.

4.4.3 Interpretation of results

The results shown in fig. 4.4.1 and fig. 4.4.2 indicate that the neural networks have

learned ways to extract information to infer these parameters. This is especially

interesting for X = log10(ξ
2
0/A) since part of our motivation for this work was to
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see if SCNNs can break the parameter degeneracy between A and ξ0 that is present

in power spectrum-only analyses (28; 52). The stronger predictive power of the Z

and A neural networks over the X network can be understood in the following way:

unlike for Z and A, there is no information contained in the power spectrum which

allow one to discern between different values of X. Therefore, the only way for the

X estimator to learn useful information is to extract information beyond the power

spectrum, which is harder because it requires the network to learn more complex

patterns.

4.5 Estimator degradation due to noise

We trained our neural networks to provide parameter estimates on noiseless maps.

However, real birefringence maps are reconstructed from CMB polarization data. This

means that birefringence maps will have noise sourced from the Q and U measure-

ments as well as the statistical estimators used to reconstruct the birefringence. A

popular technique for birefringence reconstruction is to use quadratic estimators (70–

72). For example, POLARBEAR, ACT, and SPT have all used quadratic estimators

in their analysis of anisotropic birefringence (73–75). For a more general discussion

of CMB birefringence quadratic estimators and their statistical reconstruction noise

see (29). In this section we explore how our neural networks, which were trained on

noiseless maps, can perform on noisy data.

We model the noisy pixelated birefringence maps as αS(ni) + αN(ni) where the

signal αS(ni) is generated from the LCM simulation. The noise αN(ni) is assumed

to be a Gaussian random field drawn from the angular power spectrum Nℓ, uncor-

related with the signal. We assume Nℓ ∝ ℓ0 is constant, corresponding to white

noise. This choice is motivated by the noise being dominated by reconstruction

noise (29). We study different noise levels by multiplying the expected CMB-S4

noise level NCMB−S4
ℓ = 1.5× 10−5 deg2, which we obtained from figure 1 of ref. (29),

by a multiplicative factor. We use the synfast method of healpy to generate αN(ni).
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An example of the signal and noise maps appears in fig. 4.5.1.

The histograms in fig. 4.5.2 show the distribution of estimators for each neural

network given LCM parameters ζ0 = 1, A = 0.316, and ξ0 = 10, which correspond to

Z = 0, A = 0, and X = 2.5. The networks were trained on noiseless maps and tested

on birefringence maps with various noise levels. The results for each estimator are

shown across three panels. In each panel we depict the input LCM parameter value

with a vertical black line. In general the estimators tend to give biased predictions

with comparable variances when provided with noisy data.

In order from top to bottom the panels show our results for the Z, A, and X

estimators. The Z estimator exhibits a bias toward smaller values than the true pa-

rameter at Z = 0. This is shown by the fact that the centers of the distributions move

to smaller values with increasing noise. For example, the prediction for 0.5NCMB−S4
ℓ

is centered at Z ≈ −0.45, whereas the prediction for NCMB−S4
ℓ is centered at around

Z ≈ −0.65. This can be understood as the neural network interpreting the noise

as part of the signal. Since the noise power spectrum is approximately a power law

with a positive index over the range of multipoles that can be probed with the map

resolution of Nside = 128, the noise looks like many small loops about the size of a

pixel. In a similar way, the A estimator biases its predictions to larger values than

the true value. Again, this is to be expected since the neural network interprets the

noise as part of the signal. At the level of the power spectrum the noise is additive:

Ctot
ℓ = Csignal

ℓ +Cnoise
ℓ , which can partially account for the trend in the prediction bias.

The X estimator is the most affected by the addition of noise. Like the A estimator,

its predictions are biased above the true value. However, we see that while the bias

for the Z and A estimators is less than an order of magnitude for all noise levels, the

X estimator’s bias is larger than the other estimators’ bias at every noise level. This

upward bias is expected since X is proportional to ξ20 , which controls the number

density of loops. If the noise is interpreted as signal it will have the appearance of

adding many loops on small scales, leading to an upward bias.
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In order for all three estimators to be biased by no more than an order of magni-

tude, one would need an experiment with about 10 times less noise than CMB-S4 as

shown by the yellow histograms in fig. 4.5.2. This analysis reveals that our noiseless

estimators prove inadequate to provide reliable estimates at the noise level of a CMB-

S4-like experiment. Therefore methods for improving the estimators are required. A

discussion of some of these can be found in sec. 4.6.

4.6 Summary and conclusion

In this work, we have explored how spherical convolutional neural networks (SCNNs)

can be used to perform parameter inference on simulated axion-string-induced bire-

fringence maps. Below is a summary of the main contributions and results of this

work:

• We developed a pipeline for generating HEALPix maps of anisotropic bire-

fringence based on a simulation of the loop-crossing model (LCM), which has

phenomenological parameters ζ0, ξ0, and A, and which control the radius of

string loops, the number of string loops, and the birefringence accumulated by

a photon after passing through a single loop, respectively. The LCM parame-

terization is informed by string network dynamics.

• We trained three independent SCNNs to estimate the parameters Z ≡ log10 ζ0,

A ≡ log10A2ξ0, and X ≡ log10 ξ
2
0/A from these maps. The choice of these

parameters is driven by the following considerations. First, the birefringence

power spectrum from axion strings is proportional to A2ξ0, so it is natural to

train our SCNNs to learn this combination of parameters and another, ξ20/A for

which the power spectrum provides no information. Second, some parameters

can take values over several orders of magnitude. This motivates us to train the

SCNNs to infer the base-10 log of the parameters.
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• We evaluated the SCNN estimators’ performance on birefringence maps gen-

erated from known LCM model parameters (see fig. 4.4.1), finding that the

networks performed very well for Z and A, and moderately well for X. For

example, the Z and A estimators are typically biased by no more than 0.04

units, which corresponds to a factor of 100.04 ≈ 1.10 deviation from the true

value of ζ0 or A2ξ0. On the other hand, depending on the input value the X

estimator is typically biased by less than 0.3 units corresponding to a factor of

100.3 ≈ 2 error in ξ20/A – although the error can be as high as a factor of 6 for

some values of ξ20/A.

• We used approximate Bayesian computation to sample the posterior distribution

for the case when the estimators yield Ẑ = 0, Â = 0, and X̂ = 2.5, which allowed

us to quantify the statistical uncertainty of the predictions (see fig. 4.4.2). The

estimates for Z and A had standard deviations of σZ = 0.03 and σA = 0.014,

respectively. The X estimator had a larger uncertainty with σX = 0.3.

• By simulating CMB birefringence maps with various noise levels we demon-

strated that the accuracy of the neural networks is degraded in a qualitatively

predictable way.

Our work was motivated in part by the question: can a neural network learn

information about a birefringence map that is inaccessible with its power spectrum

alone? In particular, in the context of the loop crossing model, the birefringence

angular power spectrum only depends upon the intensity and abundance parameters,

A and ξ0, through the combination A2ξ0, but not the combination ξ20/A. Based

on several tests of their accuracy and precision, we conclude that the SCNNs that

learned A2ξ0 and ξ20/A are able to furnish reliable estimators of these parameters

when provided with noiseless birefringence maps generated from LCM simulations.

Of course the uncertainty in ξ20/A is much larger than in A2ξ0, approximately a

factor of 2 versus 3% for the sample parameter point illustrated in fig. 4.4.2. This
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was expected, since information about ξ20/A is not encoded in the power spectrum,

but rather stored in higher-point correlations. Nevertheless, our priors based on UV

considerations and string network simulations allow the parameters A and ξ0 to each

vary by about an order of magnitude, and even the factor of 2 uncertainty in ξ20/A is

informative, relatively speaking.

Our work demonstrates that even with an unoptimized architecture and inference

pipeline, SCNNs are capable of extracting information beyond the power spectrum.

We anticipate that better performance (particularly in extracting ξ20/A) could be

achieved with an alternative architecture and/or extended inference pipeline. For

example, we have trained estimators using mean-squared-error loss which may allow

for biases, but the method presented in ref. (76) uses deep summaries to construct

minimally-biased point estimators.

These results are a step toward a pipeline that can be used to do inference on real

data, but there are areas available for improvement. In sec. 4.5 we found that noise

introduces additional biases in the predictions, particularly for X, which exhibited

biases as large as two orders of magnitude for CMB-S4 noise levels. We found that

to yield parameter estimates within an order of magnitude from the true value, one

would need an experiment with 10% of the noise level compared to CMB-S4. To

address noise more effectively, one could explore two potential strategies. First, neural

networks could (and should!) be trained on maps that already include noise specific to

the experimental setup. This would allow the model to learn both the signal and the

noise features, leading to more robust predictions. Additionally, one could implement

techniques from (46), which demonstrated improvements by using a combination of

max/average pooling and random permutations in the deeper layers of the network.

These regularization and data augmentation techniques help the network generalize

better in noisy environments by preventing overfitting to large-scale correlations that

might include noise. We leave the exploration of these techniques to future work.

This material is based upon work supported (in part: R.H. and A.J.L.) by the



123

National Science Foundation under Grant Nos. PHY-2114024 and PHY-2412797.

M.A.A. is supported by a DOE grant DOE-SC0021619. Some of the results in this

paper have been derived using the healpy and HEALPix packages. A.J.L. thanks

Bhuvnesh Jain and Matthew Johnson for illuminating discussions of machine learn-

ing methods. R.H. would like to thank Siyang Ling for his invaluable contributions

to the LCM simulation code, and Juehang Qin, Dorian Amaral, and Ivy Li for useful

conversations about statistical learning.



124

Figure 4.1.1 : Illustration of our neutral network training and inference pipelines.

Mock data is generated by performing simulations of the loop crossing model (LCM),

which has parameters A, ζ0, and ξ0. Data takes the form of a pixelated map of

birefringence rotation angles α(ni) in HEALPix format. Mock data is used to train

three spherical convolutional neural networks (SCNNs), which return point estimates

of Z = log10(ζ0), A = log10(A2ξ0), and X = log10(ξ
2
0/A). We validate the training of

the SCNNs using two checks of their parameter inference. One method is approximate

Bayesian computation (ABC), which calculates the posterior over the LCM model

parameters.



125

Figure 4.2.1 : Illustration of birefringence accumulation in the loop crossing model

(LCM). CMB photons (yellow arrowed lines) propagate from the surface of last scat-

tering (z = 1100) to Earth (z = 0). The intervening space is filled with an LCM string

network consisting of circular planar loops with statistically homogeneous positions

and statistically isotropic orientations. Each time a photon passes through a loop its

plane of polarization incurs a rotation of ∆α ± Aαem depending on the orientation

of the loop. Birefringence accumulates over time with multiple loop crossings. Three

redshift slices (z = 240, z = 40, and z = 5) are illustrated, showing a possible real-

ization of the string network (orange shells with black circles) and the accumulated

birefringence (mollweide projections). This graphic is figure 4 of ref. (30), and we

reproduce it here with permission from the authors.
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Figure 4.3.1 : Illustration of LCM parameter estimation using SCNNs on simulated

birefringence maps. From left to right we show, (1) a set of LCM model parameters

Z = 0, A = 0, and X = 2.5, corresponding to ζ0 = 1, A = 0.316, and ξ0 = 10;

(2) four realizations of birefringence mock data generated using LCM simulation; (3)

graphical depiction of our three SCNNs; and (4) parameter estimates furnished by

each of the three SCNNs for each of the four maps.
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Figure 4.4.1 : An illustration of the performance of our trained SCNNs. We show

the error magnitude (4.5) as a colored heatmap where cooler/darker colors indicate

better performance. We also show the displacement from input parameter pair to the

average output of the SCNNs as a white arrow. There are no samples in the white

regions, which are outside of our prior range, as indicated by the diagonal labels; see

also tab. 4.2.1.
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Figure 4.4.2 : Posteriors on the parameters Z = log10(ζ0), A = log10(A2ξ0), and X =

log10(ξ
2
0/A) obtained using ABC sampling when θ̂target = (Ẑ, Â, X̂) = (0, 0, 2.5).

The diagonal subplots show the 1D marginal posteriors. The gray dashed curves in

the diagonal subplots depict the prior for each parameter. Gray vertical lines depict

the parameter with the highest posterior density. Red vertical lines depict θ̂target.

Lower-left subplots show a histogram of 2D marginal posteriors. Red crosses depict

the projection of θ̂target in each plane.
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Figure 4.5.1 : Left: a realization of a CMB birefringence map generated with LCM

parameters ζ0 = 1.0, A = 0.316, and ξ0 = 10.0. Middle: a realization of Gaussian

random noise for a CMB-S4-like experiment. Right: combined signal and noise.

Since the noise power spectrum follows a white noise profile, the noise level increases

toward smaller angular scale. As a result, the granularity of the noise in the map

shown is determined by the resolution of the map. A higher resolution would give

the appearance of smaller scale fluctuations.
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Figure 4.5.2 : Performance of our SCNNs on noisy mock data. For each noise level

(colored histograms) we show the sample distribution over the SCNN estimators Ẑ

(top), Â (middle), and X̂ (bottom). To generate each histogram, we perform 100

LCM simulations with ζ0 = 1, ξ0 = 10, and A = 0.316 (corresponding to Z = 0,

A = 0, and X = 2.5, indicated by the vertical black bar), add white noise up to the

level of a CMB-S4-like experiment, and pass these noisy birefringence maps to our

SCNNs, which were trained on noiseless mock data.
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Appendix

4.A Loop redshift probability density

This appendix provides a derivation of eq. (4.3), which gives the probability den-

sity p(z) to find a string loop at redshift z. In the LCM the average number

of string loops with comoving radius between r and r + dr, with comoving po-

sition between s⃗ and s⃗ + ds⃗ on the observer’s past light cone, and with orien-

tation (normal to the plane of the loop) between k̂ and k̂ + dk̂ is given by (27)[
dN = ν(r, z) dr d3s⃗ d2k̂

4π
.
]
Theassumptionthatloopsareorientedisotropicallyimpliesthatν

is independent of k̂, and the assumption that the loops are distributed homogeneously

throughout space at a given time implies that ν only depends on s⃗ through s = |s⃗|,
which is a proxy for time (or redshift) on the past light cone. In spherical polar form we

have d3s⃗ = s2 d2n ds, where n is the unit vector pointing in the direction of s⃗. To write

d3s⃗ in terms of z note that s(z) =
∫ z

0
H−1(z′)dz′. Hence, d3s⃗ = s2(z)H−1(z) dz d2n.

In order to more conveniently parameterize the scaling property of string loop

networks we introduce a kernel function χ(ζ, z) as in ref. (27) such that,

ν(r, z) =

∫ ∞

0

dζ χ(ζ, z)
H(z)2(1 + z)−2

2πr
δ
[
r − ζ(1 + z)/H(z)

]
. (4.6)

To implement the assumption that all string loops have the same radius at a given

time, we take χ(ζ, z) = ξ0 δ(ζ − ζ0). Integrating over the loop radius and orientation

gives the average number of loops with comoving position between s⃗ and s⃗+ds⃗ to be

dN =

∫ ∞

0

dr

∫

4π

d2k̂

4π
ν(r, z) d3s⃗ =

ξ0
2πζ0

(
H(z)2(1 + z)−3 s2(z) dz

)
d2n . (4.7)

The expression on the right implicitly defines a probability density over z which is

obtained by normalizing it over the range of possible redshift values. Hence, taking



132

zcmb = 1100, we have

p(z) =
H2(z)(1 + z)−3 s2(z)∫ zcmb

0
H2(z)(1 + z)−3 s2(z) dz

,

which appears in eq. (4.3).

4.B Neural network architectures

This appendix contains the architectures used for our SCNNs in tables 4.B.1-4.B.3.

To construct our neural networks we use the Python package DeepSphere (48;

49). This package provides implementations of layers designed for use on HEALPix

formatted maps. These include the ChebyshevConv and MaxPool layers which perform

convolutions and pooling.
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Layer type Output shape Parameters

Input (Nb, Npix, 1) 0

ChebyshevConv (K=32, Fout=40) (Nb, Npix, 40) 840

MaxPool (p=2) (Nb, 12288, 40) 0

ChebyshevConv (K=10, Fout=20) (Nb, 12288, 20) 8020

MaxPool (p=1) (Nb, 768, 20) 0

ChebyshevConv (K=5, Fout=10) (Nb, 768, 10) 1010

GlobalAvgPool (Nb, 10) 0

Flatten (Nb, 10) 0

Dense (Nb, 1) 11

Table 4.B.1 : Neural network architecture used for the Z = log10(ζ0) estimator.

The batch size is Nb = 32 and the HEALPix resolution parameter is Nside = 128, so

the number of pixels is Npix = 196, 608. All layers use ReLU activations and batch

normalization is disabled (use_bn=False).
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Layer type Output shape Parameters

Input (Nb, Npix, 1) 0

ChebyshevConv (K=5, Fout=8) (Nb, Npix, 8) 48

MaxPool (p=2) (Nb, 12288, 8) 0

ChebyshevConv (K=5, Fout=16) (Nb, 12288, 16) 656

ChebyshevConv (K=5, Fout=16) (Nb, 12288, 16) 1296

MaxPool (p=1) (Nb, 3072, 16) 0

ChebyshevConv (K=5, Fout=32) (Nb, 3072, 32) 2592

ChebyshevConv (K=5, Fout=32) (Nb, 3072, 32) 5152

MaxPool (p=1) (Nb, 768, 32) 0

ChebyshevConv (K=5, Fout=64) (Nb, 768, 64) 10304

GlobalAvgPool (Nb, 64) 0

Flatten (Nb, 64) 0

Dense (Nb, 1) 65

Table 4.B.2 : Neural network architecture used for the A = log10(A2ξ0) estimator.

The batch size is Nb = 32 and the HEALPix resolution parameter is Nside = 128, so

the number of pixels is Npix = 196, 608. All layers use ReLU activations and batch

normalization is disabled (use_bn=False).
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Layer type Output shape Parameters

Input (Nb, Npix, 1) 0

ChebyshevConv (K=5, Fout=16) (Nb, Npix, 16) 96

ChebyshevConv (K=5, Fout=32) (Nb, Npix, 32) 2592

MaxPool (p=2) (Nb, 12288, 32) 0

ChebyshevConv (K=5, Fout=64) (Nb, 12288, 64) 10432

ChebyshevConv (K=5, Fout=128) (Nb, 12288, 128) 41344

MaxPool (p=1) (Nb, 3072, 128) 0

ChebyshevConv (K=5, Fout=256) (Nb, 3072, 256) 164608

ChebyshevConv (K=5, Fout=512) (Nb, 3072, 512) 656896

MaxPool (p=1) (Nb, 768, 512) 0

ChebyshevConv (K=5, Fout=512) (Nb, 768, 512) 1312256

ChebyshevConv (K=5, Fout=512) (Nb, 768, 512) 1312256

GlobalAvgPool (Nb, 512) 0

Flatten (Nb, 512) 0

Dense (Nb, 128) 65664

Dense (Nb, 1) 129

Table 4.B.3 : Neural network architecture used for the X = log10(ξ
2
0/A) estimator.

The batch size is Nb = 8 and the HEALPix resolution parameter is Nside = 128, so

the number of pixels is Npix = 196, 608. All layers use ReLU activations and batch

normalization is disabled (use_bn=False).
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Chapter 5

Neutron star cooling with lepton-flavor-violating
axions

Abstract

The cores of dense stars are a powerful laboratory for studying feebly coupled particles

such as axions. Some of the strongest constraints on axionlike particles and their

couplings to ordinary matter derive from considerations of stellar axion emission. In

this work we study the radiation of axionlike particles from degenerate neutron star

matter via a lepton-flavor-violating coupling that leads to muon-electron conversion

when an axion is emitted. We calculate the axion emission rate per unit volume

(emissivity) and by comparing with the rate of neutrino emission, we infer upper

limits on the lepton-flavor-violating coupling that are at the level of |gaeµ| ≲ 10−6.

For the hotter environment of a supernova, such as SN 1987A, the axion emission rate

is enhanced and the limit is stronger, at the level of |gaeµ| ≲ 10−11, competitive with

laboratory limits. Interestingly, our derivation of the axion emissivity reveals that

axion emission via the lepton-flavor-violating coupling is suppressed relative to the

familiar lepton-flavor-preserving channels by the square of the plasma temperature to

muon mass ratio, which is responsible for the relatively weaker limits.

Notes about this project: This chapter is from a paper I wrote with Andrew

J. Long and Hong-Yi Zhang that was published in the journal The Physical Review

D in 2023 (1).

The goal of this project, similar to the previous projects was to study axion

phenomenology and like chapter 2 it place constraints on axion parameters. Unlike

in previous chapters, here we consider axion particles with masses on the order ma ∼
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1 MeV produced in neutron stars. The basic idea is that if axions have a lepton-

flavour violating coupling to electrons and muons, then the cooling rates of neutron

stars would have an additional channel by which they can lose energy which would

modify the rate at which they cool. My primary contribution to this work was the

numerical evaluation of the axion emissivity given by eq. (5.5). The Monte Carlo

techniques I used are discussed in detail in app. 5.C.

5.1 Introduction

Axions are pseudo-Goldstone bosons associated with a spontaneously broken global

symmetry that is anomalous to the standard model (SM) gauge couplings (2). Initially

proposed as a natural solution to explain the absence of the neutron electric dipole

moment (3–5), a QCD axion is characterized by its decay constant fa (6–9) and its

mass is determined by ma ≈ 5.7µeV(1012GeV/fa) (10; 11). Apart from the QCD

axion, axionlike particles have also been extensively studied in string theory (12–14)

and dark matter physics (15–19). For recent reviews, refer to (20–23).

Due to their weak interactions with SM particles, detecting axions in terrestrial

experiments is challenging. Therefore, it is motivated to search for evidence of axions

in astrophysical systems where their feeble couplings are partially compensated by

high temperatures and densities (24). For instance, probing axion emission from

the white dwarf luminosity function (25–28) places a stringent limit on the axion-

electron coupling at the level of gaee ≲ 10−13. Additionally, the axion’s interaction

with nucleons is probed by neutron star (NS) cooling (29–31) and supernova neutrino

emission (32–39), which imply tight upper limits at the level of gaNN ≲ 10−10.

As an extension of the SM, there is no strong reason for the ultraviolet theory

of axions to respect lepton flavor conservation since it is an accidental symmetry

of the SM broken by tiny neutrino masses. The axions whose ultraviolet theory is

responsible for the breaking of the flavor symmetry are known as flavons or familons

(40–44), which can also explain the strong CP problem if they have a coupling to
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Figure 5.1.1 : If axions are produced in neutron star cores, they will carry energy out

of the star and make the neutron star cool down more efficiently than expected.

gluons (45; 46). Even if the underlying theory preserves lepton flavor, lepton-flavor-

violating (LFV) effects can arise from radiative corrections (47–50). It has been shown

that LFV interactions can account for the production of dark matter through thermal

freeze-in (51). Tests of lepton flavor conservation thus provide important information

about new physics.

Laboratory tests of lepton-flavor violation serve as an indirect probe of the axion’s

LFV interactions. Notably, charged lepton flavor violation would lead to rare lepton

decays (52). If the axion were heavier than the muon, an effective field theory ap-

proach could be used to study decays such as µ → eγ, µ → 3e and µ− e conversion,

being the best process to detect LFV in the eµ sector.∗ For lighter axions, µ → ea

could be the dominating channel and the current limit on Br(µ → ea) is of order 10−6

∗In the SM, LFV decays are suppressed by the neutrino mass-squared difference and Br(µ →
eγ) ∼ Br(µ → 3e) ∼ 10−54 (52–54), far below the current experimental limits Br(µ → eγ) <

4.2× 10−13 (55) and Br(µ → 3e) < 1.0× 10−12 (56).
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(57) or 10−5 (58) depending on the axion mass and chirality of the interaction. The

limit will be improved in the future experiments MEG II (59; 60) and Mu3e (61) by

up to two orders of magnitude (62).

In this work, we aim to establish an astrophysical limit on the axion’s LFV inter-

actions based on NS cooling arguments, as a complement to current lab limits. The

basic idea is illustrated in figure 5.1.1; if axions are produced in NS cores, they must

not carry energy out of the star more efficiently than standard neutrino-mediated

cooling channels (24). In a NS core, unlike nondegenerate stars or even white dwarf

stars, the particle densities are so high that the electron Fermi energy exceeds the

muon mass, and an appreciable population of muons is present (63). As such, NSs

provide a unique opportunity to probe the axion’s LFV coupling with muons and

electrons.

5.2 Axions with LFV couplings

We consider a LFV coupling among the electron, muon, and axion, which is expressed

as

LLFV =
gaeµ

me +mµ

Ψeγ
ργ5Ψµ ∂ρa + h.c. , (5.1)

where Ψe(x) is the electron field, Ψµ(x) is the muon field, a(x) is the axion field,

me ≈ 0.511MeV is the electron mass, mµ ≈ 106MeV is the muon mass, and gaeµ is

the axion’s LFV coupling. The coupling may also be written in terms of the axion

decay constant fa as gaeµ = Caeµ(me+mµ)/(2fa). This interaction can naturally arise,

e.g., in the models of the LFV QCD axion (8; 9), the LFV axiflavon (45; 46; 64), the

leptonic familon (65–67) and the majoron (68; 69) (also see (62) for a summary of

constraints). Past studies of charged lepton flavor violation, from both terrestrial

experiments and cosmological / astrophysical observations, furnish constraints on the

axion LFV coupling gaeµ, which we summarize here.

The LFV interaction opens an exotic decay channel for the muon µ → ea, as long
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as the axion mass is not too large ma < mµ −me. The branching ratio is predicted

to be (70)

Br(µ → ea) ≈ Γ(µ → ea)

Γ(µ → eνν)
= 7.0× 1015g2aeµ . (5.2)

Initial searches for the two-body muon decay were performed by Derenzo using a

magnetic spectrometer, resulting in an upper limit on the branching ratio of 2× 10−4

for the mass range 98.1–103.5MeV (71). Jodidio et al. constrained the branching

ratio for a massless familon to be < 2.6× 10−6, which was later extended to massive

particles up to ∼ 10MeV (62). Bryman and Clifford analyzed data of muon and tauon

decays obtained from NaI(Tl) and magnetic spectrometers, concluding an upper limit

of 3 × 10−4 for masses less than 104MeV (72). Bilger et al. studied muon decay in

the mass range 103–105MeV using a high purity germanium detector and established

a limit of 5.7× 10−4 (73), while the PIENU Collaboration improved the limit in the

mass range 87.0–95.1MeV (74). The TWIST experiment performed a broader search

for masses up to ∼ 80MeV by accommodating nonzero anisotropies, resulting in an

upper limit of 2.1× 10−5 for massless axions (58). These constraints on Br(µ → ea)

translate into upper limits on the LFV coupling gaeµ, and we summarize the current

status in table 5.2.1.

Apart from terrestrial experiments, cosmological and astrophysical observations

also constrain the axion’s LFV interaction. If this interaction were too strong, rela-

tivistic axions would be produced thermally in the early universe; however, the pres-

ence of a dark radiation in the universe is incompatible with observations of the cosmic

microwave background anisotropies. Constraints on dark radiation are typically ex-

pressed in terms of a parameter Neff called the effective number of neutrino species. A

recent study of flavor-violating axions in the early universe finds that current obser-

vational limits on Neff require the LFV coupling to obey |2fa/Caeµ| > 2.5× 108GeV

(75). Astrophysical probes of the axion’s LFV interaction have not been extensively

explored. Calibbi et al. considered the bound on Br(µ → ea) from SN 1987A associ-

ated with the cooling of the proto-NS (62). Assuming that the dominant energy loss
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|gaeµ| 2fa
Caeµ

[GeV] Br(µ → ea) ma [MeV] Experiment Reference

< 3.0× 10−6 > 3.5× 104 < 1.0 ≲ 1 NS cooling This work

≲ 8× 10−10 ≳ 1× 108 ≲ 4× 10−3 ≲ 50 SN 1987A, µ → ea (62)

< 4.2× 10−10 > 2.5× 108 < 1.3× 10−3 ≲ 10−7 Cosmology, ∆Neff (75)

< 2.9× 10−10 > 3.7× 108 < 5.7× 10−4 103− 105 Rare muon decay (73)

≲ 2× 10−10 ≳ 5× 108 ≲ 3× 10−4 < 104 Rare muon decay (72)

< 2× 10−10 > 6× 108 < 2× 10−4 98.1− 103.5 Rare muon decay (71)

< 1× 10−10 > 9× 108 < 1× 10−4 47.8− 95.1 Rare muon decay (PIENU)† (74)

< 5.5× 10−11 > 1.9× 109 < 2.1× 10−5 < 13 Rare muon decay (TWIST) (58)

≲ 4× 10−11 ≳ 3× 109 ≲ 9× 10−6 ≲ 50 SN 1987A, lf → l′fa This work

< 1.9× 10−11 > 5.5× 109 < 2.6× 10−6 ≲ 10 Rare muon decay (57; 62)

Table 5.2.1 : Summary of constraints on the axion’s LFV coupling in the e-µ sector,

where stronger constraints are presented at the bottom. See the main text for more

detailed descriptions. For the NS cooling limit, we calculate the axion emissivity via

l+ f → l′ + f + a and compare with the neutrino emissivity via Murca channels. For

the SN 1987A limit, we compare with the upper bound on energy loss rate.
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channel is free muon decay µ → ea, they derive an upper limit on the branching ratio

at the level of 4×10−3. We find that a stronger constraint is obtained from the 2-to-3

scattering channels, such as µp → epa, and we discuss this result further below.

To provide a comprehensive overview, we also introduce the constraints on LFV

couplings involving τ leptons. Currently, laboratory limits on the branching ratios

of rare tauon decays are Br(τ → ea) < 2.7 × 10−3 and Br(τ → µa) < 4.5 × 10−3

(62; 76). Constraints from Neff are more stringent, Br(τ → ea) ≲ 3 × 10−4 and

Br(τ → µa) ≲ 5×10−4 (75). Each of these limits is expected to improve significantly,

by up to three orders of magnitude, in the future Belle II (62; 77) and CMB-S4

experiment (75; 78; 79). However, it remains challenging to impose constraints on τ

leptons from astrophysical systems due to their considerable mass of 1.8GeV, which

far exceeds stellar core temperatures.

5.3 Axion emission via LFV couplings

The emission of axions from NS matter via the LFV interaction can proceed through

various channels. One might expect the dominant channel to be the decay of free

muons µ → ea; however, since the electrons in NS matter are degenerate, this channel

is Pauli blocked, and its rate is suppressed in comparison with scattering channels.

Since NS matter consists of degenerate electrons, muons, protons, and neutrons,

various scattering channels are available. We denote these collectively as‡

l + f → l′ + f + a , (5.3)

where a lepton l = e, µ is converted to another l′ = µ, e with the spectator particle

f = p, e, µ. We consider channels in which the NS’s muon is present in the initial

state, and channels in which muons are created thanks to the large electron Fermi

momentum. The scattering is mediated by the electromagnetic interaction (photon

‡We neglect the Compton process for axions, since the number density of photons is low compared

to other particles.
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exchange), and channels involving neutrons are neglected. Assuming that all particles

are degenerate, scattering predominantly happens for particles at the Fermi surface.

These processes are kinematically allowed if |pF,l−pF,f | < pF,l′+pF,f and |pF,l′−pF,f | <
pF,l + pF,f , implying the existence of a threshold momentum of the spectator particle

pF,f > (pF,e − pF,µ)/2 . (5.4)

Here we have introduced the Fermi momentum pF,i of the particle species i.

The quantities of interest are the axion emissivities ε
(lf)
a , which corresponds to

the energy released in axions per unit volume per unit time through the channel

lf → l′fa. We assign (E1,p1) and (E ′
1,p

′
1) for the initial and final four-momenta of

the converting leptons l and l′, (E2,p2) and (E ′
2,p

′
2) for the spectator f , and (E ′

3,p
′
3)

for the axion. Then the axion emissivity is calculated as

ε(lf)a =
(2π)4

S

∫ 2∏

i=1

d̃pi

3∏

j=1

d̃p′j
∑

spin

∣∣M(lf)
∣∣2

× δ(4)(p1 + p2 − p′1 − p′2 − p′3)

× E ′
3 f1 f2 (1− f ′

1) (1− f ′
2) ,

(5.5)

where S is the symmetry factor accounting for identical initial and final state par-

ticles, M(lf) is the Lorentz invariant matrix element, fi and f ′
i are the Fermi-Dirac

distribution functions, the factor (1 − f ′
i) takes into account the Pauli blocking due

to particle degeneracy, and d̃p ≡ d3p/[(2π)32E] is the Lorentz-invariant differential

phase space element. We do not include a factor of (1 + f ′
3), since f ′

3 ≪ 1 and there

is no Bose enhancement for axion production since NSs are essentially transparent to

axions for the currently allowed parameter space.

Calculating the emissivity (5.5) requires evaluating the 15 momentum integrals

along with the 4 constraints from energy and momentum conservation. We evaluate

all but 2 of these integrals analytically using the Fermi surface approximation, and we

calculate the last 2 integrals using numerical techniques. The Fermi surface approxi-

mation assumes that the integrals are dominated by momenta near the Fermi surface
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|p| ≈ pF ; smaller and larger momenta do not contribute because of Pauli blocking or

Boltzmann suppression. We find the axion emissivity of the lf → l′fa channel to be

ε(lf)a =
328π2α2g2aeµ

945m4
µ

βF,lE
3
F,e

β2
F,fp

2
F,f

F (lf)T 8 , (5.6)

where α ≈ 1/137 is the electromagnetic fine-structure constant, EF,i is the Fermi

energy, βF,i ≡ pF,i/EF,i is the Fermi velocity, T is the plasma temperature, and

F (lf) is a factor depending on both the specific process and the Fermi velocity of

the scattering particles. To derive (5.6), we have assumed that the axion mass is

small compared to the NS temperature ma ≪ T , muons and electrons are in the

beta equilibrium (i.e., EF,e ≈ EF,µ), electrons are ultra relativistic but muons are

not (i.e., pF,µ ≲ mµ), and T ≪ m2
µ/EF,e. Our derivation of (5.6) can be found in

appendix 5.A. In addition, we evaluate the emissivity fully numerically using Monte

Carlo integration methods to estimate the integrals in (5.5) without employing the

Fermi surface approximation. In the regime of interest, the two methods agree very

well. The impact of an axion mass ma ≳ T is discussed in appendix 5.C.

The temperature dependence of the axion emissivity (5.6) is especially interesting

and important for understanding the limits from NS cooling. For comparison, note

that axion bremstrahlung via lepton-flavor-preserving (LFP) interactions (such as

ep → epa or µp → µpa) goes as εa ∝ T 6. In other words, the LFV interaction

leads to an emissivity that’s suppressed by an additional factor of T 2E2
F,e/(m

2
µ −

m2
e)

2 ∼ T 2/m2
µ, which is of order (100 keV/100MeV)2 ∼ 10−6 for T ∼ 109K. A

detailed discussion appears in appendix 5.A, but the essential idea can be understood

as follows. The phase-space integrals over momenta can be converted to energy

integrals, and each integral for degenerate leptons and protons is restricted to the

Fermi surface of thickness ∼ T , giving a factor of T 4. The phase-space integral of

axions (i.e., d3p′3/E
′
3) gives a factor of T 2. The axions are emitted thermally and

have an energy ∼ T . The energy conservation delta function gives T−1. The squared

matrix element has a temperature dependence T 2. Putting all these together, we see

that the emissivity is proportional to T 8. In comparison, the squared matrix element
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for the LFP interactions has no temperature dependence since one power of T from

the coupling vertex is canceled by T−1 from the lepton propagator.

We numerically evaluate the axion emissivities (5.6) and present these results in

figure 5.3.1 for the six channels lf → l′fa, where the effective mass of protons is

taken to be 0.8mp (see (80) and references therein).§ Using the strong degeneracy

of particles and the beta equilibrium condition EF,e ≈ EF,µ, one can show that the

emissivities are equal for the channels ef → µfa and µf → efa. Thus the plot only

shows three curves corresponding to in-states consisting of a muon and a spectator

particle f = p, e, µ. The channels with a spectator proton (f = p) have the largest

emissivity across the range of muon Fermi momenta shown here; this is a consequence

of the enhanced matrix element and the larger available phase space for these scat-

terings. For the channels with a spectator muon (f = µ), the emissivity drops to zero

below βF,µ ≈ 0.34; this corresponds to a violation of the kinematic threshold in (5.4).

For all channels, the emissivity decreases with decreasing muon Fermi velocity due to

the reduced kinematically allowed phase space. On the other hand, for larger muon

Fermi velocity, the channels with spectator electrons and muons coincide, since both

particles can be regarded as massless. For the top axis in figure 5.1.1, we show the

corresponding mass density of a NS assuming the npeµ model; see appendix 5.B for

more details.

The total axion emissivity is obtained by summing over the six channels. For this

estimate we set βF,µ = 0.84. We find the axion emissivity via LFV interactions to be

εLFVa ≃ 4.8× 1032g2aeµT
8
9 erg cm−3 s−1 , (5.7)

where T9 ≡ T/(109K) and 109K ≈ 86.2 keV.

§Using electric charge neutrality and the beta equilibrium condition EF,e ≈ EF,µ, the emissivity

is fully determined given the effective proton mass and βF,µ.



154

0.0 0.2 0.4 0.6 0.8

106

107

108

109

1010

4.6 5 6 8 10 15 25

Figure 5.3.1 : Axion emissivities ε
(lf)
a for the LFV process l + f → l′ + f + a, given

by equation (5.6), as a function of the muon Fermi velocity βF,µ. The top axis, in a

nonlinear scale, represents the corresponding mass density of a NS assuming the npeµ

matter. Here we take gaeµ = 10−11 and T = 109K, and more generally ε
(lf)
a ∝ g2aeµT

8.
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5.4 Implications for NS cooling

In low-mass NSs, slow cooling could occur via neutrino emission by the modified

Urca (Murca) processes nn → npeν, npe → nnν or slightly less efficient processes

such as the nucleon bremsstrahlung (81; 82). At the density ρ = 6ρ0, where ρ0 =

2.5×1014 g cm−3 is the nuclear saturation density (83), and with the effective nucleon

mass taken to be 0.8mN (80), the emissivity of the Murca process is given by εν =

4.4 × 1021T 8
9 erg cm−3 s−1 (84). Comparing this rate with (5.7), one finds that the

axion emission from LFV couplings dominates the neutrino emission unless

|gaeµ| ≲ 3.0× 10−6 , (5.8)

which is consistent with existing constraints. In heavier NSs, the LFV emission of

axions tends to have a less significant impact. This is because fast neutrino emission

could occur via the direct Urca processes (85). In the presence of superfluidity, the

formation of Cooper pairs can dominate over the Murca process (86; 87), further

diminishing the role of LFV axion emission. Medium effects for neutrino emission

processes are discussed in (82; 88; 89).

Axions are predominantly produced in NSs through the nucleon bremsstrahlung

process nn → nna. At the same core conditions, its emissivity is given by ε
(nn)
a ≃

2.8×1038g2annT
6
9 erg cm−3 s−1 (90; 91). The nucleon bremsstrahlung process dominate

the LFV processes if

|gaeµ| ≲ 7.6× 102|gann|T−1
9 . (5.9)

The current best constraint on the axion-neutron coupling is |gann| ≲ 2.8×10−10 (30).

Therefore, it is unlikely for the LFV couplings to play a significant role in NSs with

an age ≳ 1 yr, where the temperature has cooled to 109K (92).

These limits on the axion’s LFV coupling are relatively weak, and this is a con-

sequence of the εLFVa ∝ T 8 scaling, which is suppressed compared to LFP channels

by a factor of (T/mµ)
2, which is tiny in old NSs. However, in the proto-NS that
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forms just after a supernova, this ratio can be order one, which suggests that stronger

limits can be obtained by considering the effect of axion emission on supernova rather

than NSs. Since our analysis has focused on NS environments, adapting our results

to the more complex proto-NS system requires some extrapolation. We estimate the

axion emissivity from a supernova by extrapolating (5.7) to high temperatures. By

imposing the bound on the energy loss of SN 1987A, εa/ρ ≲ 1019 erg g−1 s−1 (24),

one finds that at a typical core condition ρ ∼ 8× 1014 g cm−3,

|gaeµ| ≲ 4× 10−11

(
50MeV

T

)4

, (5.10)

which is to be evaluated at T ∼ (30 − 60) MeV. This constraint is more stringent

than that obtained from considering µ → ea in a supernova and is comparable to the

current best terrestrial limit.

One should note that at typical core conditions of a proto-NS, nucleons and muons

are at the borderline between degeneracy and nondegeneracy where electromagnetic

field screening effects become significant. In appendix 5.C, we discuss the effect

of electromagnetic field screening due to the presence of a degenerate plasma with

charged constituents on the axion emissivity. We then account for this effect in our

numerical code by introducing an effective mass for photon propagators of order the

Thomas-Fermi wavenumber kTF.¶ Using Monte Carlo integration we evaluate the

axion emissivity up to temperatures of 100 MeV and find that extrapolating the

degenerate rate tends to overestimate the emissivity by a factor of ∼ 10, leading to a

weaker supernova constraint by a factor ∼ 3.

¶While this methodology is not apt for strongly coupled plasmas like NSs and white dwarfs, it

does furnish reasonably accurate estimates of the screening effect in axion bremsstrahlung processes

within white dwarfs (24).
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5.5 Discussion

In this article, we study the astrophysical signatures of an axionlike particle’s LFV

coupling with muons and electrons. We focus on axion emission from NS cores, where

the electron Fermi energy is large enough to maintain a high abundance of muons. Our

limits on the LFV coupling gaeµ derive from comparing the axion emission rate with

the energy loss rate due to neutrino emission, since excessively strong axion emission

would conflict with the observations of old NSs and SN 1987A. The summary of

current constraints is shown in figure 5.5.1.

Further research is needed to assess the impact of axion’s LFV interactions on

the entire cooling history of the star, including a careful treatment of equations of

state and nuclear interactions. Stronger nuclear interactions would result in higher

number densities of protons and muons at the same mass density, thereby enhancing

the rate of the LFV interactions. Such an analysis is particularly motivated for axion

emission from proto-NSs formed after type-II supernovae, where the transition from

nondegenerate to degenerate matter and the creation of the muon population could

impact axion emissivities. Our work highlights the importance of assessing both the

free muon decay channel µ → ea as well as scattering channels lf → l′fa in such

studies.
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Figure 5.5.1 : Summary of constraints on the axion’s LFV coupling in the e-µ sector.

The constraints labeled with “Calibbi et al.” and “This work” are astrophysical and

the others are lab limits obtained by measuring rare muon decay rates. The weaker

constraint we derive from NS cooling and the cosmological constraint inferred from the

∆Neff observation, shown in table 5.2.1, do not appear on this part of parameter space.

For the region labeled with “This work”, we assume a supernova core temperature

T = 30MeV and a higher temperature T = 50MeV would expand the exclusion

region into that enclosed by the black dashed line.
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Appendix

5.A Calculation of axion emissivity

In this section, we implement the Fermi surface approximation and evaluate the axion

emissivity from the process l+ f → l′ + f + a, where a lepton l = e, µ is converted to

another l′ = µ, e with the spectator particle f being one of p, e, µ. This approximation

was also used in the calculation of neutrino emissivities (84; 93) and axion emissivities

for the bremsstrahlung process by nucleons (90; 91; 94; 95). The metric signature is

(−,+,+,+).

The axion emissivity is calculated as

ε(lf)a =
1

S

∫
d3p1
(2π)3

1

2E1

d3p2
(2π)3

1

2E2

d3p′1
(2π)3

1

2E ′
1

d3p′2
(2π)3

1

2E ′
2

d3p′3
(2π)3

1

2E ′
3

∑

spin

∣∣M(lf)
∣∣2

× (2π) δ(E1 + E2 − E ′
1 − E ′

2 − E ′
3) (2π)

3 δ(3)(p1 + p2 − p′
1 − p′

2 − p′
3)

× E ′
3 f1 f2 (1− f ′

1) (1− f ′
2) ,

(5.11)

where M(lf) is the Lorentz-invariant matrix element for the scattering l+f → l′+f+a.

The symmetry factor S is needed to avoid double counting of identical particles if l or

l′ = f . The energies Ei are determined by the on-shell conditions: Ei =
√

|pi|2 +m2
i

for i = 1, 2, 1′, 2′, 3′. The thermal factors f1 f2 (1 − f ′
1) (1 − f ′

2) restrict the fermion

particle energies (E1, E2, E ′
1, and E ′

2) to be near their respective Fermi energies EF,i

within a narrow range of order temperature T ≪ EF,i. This observation motivates

the Fermi surface approximation, by which the emissivity is factorized into angular

integrals with momenta restricted to the Fermi surface and energy integrals. To

implement the Fermi surface approximation we introduce Dirac delta functions that

fix the magnitude of the fermion 3-momenta to equal their respective Fermi momenta,
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and we promote the fermion energies to integration variables via the prescription:

d3p → d3p

∫
E

pF
δ(p− pF )dE . (5.12)

This approximation allows the emissivity to be written as

ε(lf)a =
1

25(2π)11pF,1pF,2pF,1′pF,2′S
JA , (5.13)

which splits the calculation into two parts: an angular integral A and an energy

integral J , defined by

A ≡
∫

d3p1d
3p2d

3p′1d
3p′2d

2Ω′
3δ(p1 − pF,1)δ(p2 − pF,2)δ(p

′
1 − pF,1′)δ(p

′
2 − pF,2′)

× δ3(p1 + p2 − p′
1 − p′

2)

∑
spin

∣∣M(lf)
∣∣2
Fermi

E ′
3
n , (5.14)

J ≡
∫

dE1dE2dE
′
1dE

′
2dE

′
3δ(E1 + E2 − E ′

1 − E ′
2 − E ′

3)f1f2(1− f ′
1)(1− f ′

2)E
′
3
n+2

.

(5.15)

The matrix element
∣∣M(lf)

∣∣
Fermi

is evaluated with fermion 3-momenta and energies

fixed to the respective Fermi momenta and Fermi energies. The exponent n is chosen

such that E ′
3
−n ∑

spin

∣∣M(lf)
∣∣2
Fermi

is independent of E ′
3. We have neglected the axion

momentum in the momentum conservation delta function since p′3 ∼ T ≪ pF,µ. The

mass dimension of J and A is 6 + n and 3 − n, and that of
∣∣M(lf)

∣∣2 is −2. For the

LFV channels considered in this work, we note that pF,2 = pF,2′ , n = 2, and S = 1

for f being a proton and S = 2 otherwise.

5.A.1 Energy integral

The energy integral can be written as

J ≈
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

∫ ∞

−∞
dx′

1

∫ ∞

−∞
dx′

2

∫ ∞

0

dz
T 6+nz2+nδ (x1 + x2 + x′

1 + x′
2 − z)

(ex1 + 1)(ex2 + 1)(ex
′
1 + 1)(ex

′
2 + 1)

=
T 6+n

6

∫ ∞

0

dz
z3+n(z2 + 4π2)

ez − 1
, (5.16)
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where xi ≡ (Ei − EF,i)/T , x′
i ≡ (E ′

F,i − E ′
i)/T , and z ≡ E ′

3/T . The approximation

symbols arise from extending the limits of integration to infinity. The second equality

is derived using the technique in (96). For n = 2, we obtain

J =
164π8

945
T 8 . (5.17)

5.A.2 Angular integral

For the angular integral, we first integrate d3p′2 with the momentum delta function

and dp1, dp2, dp
′
1 with the Fermi surface delta function. It is convenient to align all

angles with respect to p1, so
∫
d2Ω1 simply gives 4π. The angular integral A becomes

A = 4πp2F,1p
2
F,2p

2
F,1′

∫ 1

−1

dc12

∫ 1

−1

dc11′

∫ 1

−1

dc13′

∫ 2π

0

dφ12

∫ 2π

0

dφ11′

∫ 2π

0

dφ13′

δ(p′2 − pF,2′)E
′
3
−n

∑

spin

∣∣M(lf)
∣∣2
Fermi

, (5.18)

= 32π3p2F,1p
2
F,2p

2
F,1′

∫ 1

−1

dc12

∫ 1

−1

dc11′

∫ 1

−1

dc13′

∫ π

0

dvφ δ(p′2 − pF,2′)⟨E ′
3
−n

∑

spin

∣∣M(lf)
∣∣2
Fermi

⟩φ13′ ,

(5.19)

where cij denotes the cosine of the angle between pi and pj, uφ ≡ φ11′ + φ12, vφ ≡
φ11′−φ12, and ⟨· · ·⟩φ13′ stands for an average over φ13′ . To obtain the second equality,

we have assumed that ⟨E ′
3
−n ∑

spin |M|2Fermi⟩φ13′ and δ(p′2 − pF,2′) do not depend on

uφ, and may rely on vφ only through cos vφ.

To simplify the expression further, we note that 2 and 2′ represent identical particle

species whereas 1 and 1′ represent different particle species, and either pF,2 ≥ pF,1, pF,1′

or pF,2 < pF,1, pF,1′ . The delta function then becomes

δ(p′2 − pF,2′) =
δ(vφ − vφ,0)

pF,1′
√
(1− c211′)(1− c212)(1− cos2 vφ,0)

, (5.20)

where

vφ,0 = arccos

[
p2F,1 + p2F,1′ − 2pF,1pF,1′c11′ + 2pF,2(pF,1 − pF,1′c11′)c12

2pF,1′pF,2
√
(1− c211′)(1− c212)

]
. (5.21)
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To have a real-valued vφ,0 within the range from 0 to π, we must require cos2 vφ,0 < 1.

This restricts the range of dc11′ and dc12 integrals to be within

c−11′ < c11′ < c+11′ , c−12 < c12 < c+12 , (5.22)

where

c±11′ =
(pF,1 + pF,2c12)(p

2
F,1 + p2F,1′ + 2pF,1pF,2c12)

2pF,1′(p2F,1 + p2F,2 + 2pF,1pF,2c12)
(5.23)

±
pF,2

√
(c212 − 1)[(p2F,1 − p2F,1′ + 2pF,1pF,2c12)2 − (2pF,2pF,1′)2]

2pF,1′(p2F,1 + p2F,2 + 2pF,1pF,2c12)
, (5.24)

and

c+12 = min

[
1,

p2F,1′ − p2F,1 + 2pF,2pF,1′

2pF,1pF,2

]
, c−12 = max

[
−1,

p2F,1′ − p2F,1 − 2pF,2pF,1′

2pF,1pF,2

]
.

(5.25)

Combining equations (5.18)-(5.25), we find

A = 32π3p2F,1p
2
F,2pF,1′

∫ c+12

c−12

dc12

∫ c+
11′

c−
11′

dc11′

∫ 1

−1

dc13′
⟨E ′

3
−n∑

spin

∣∣M(lf)
∣∣2
Fermi

⟩φ13′ ,vφ=vφ,0√
(1− c211′)(1− c212)(1− cos2 vφ,0)

.

(5.26)

We need to calculate the matrix element at the Fermi surface to evaluate this integral.

5.A.3 Matrix element

Now we evaluate the matrix element. It is convenient to use the LFV coupling

LLFV = −igaeµa(Ψeγ5Ψµ +Ψµγ5Ψe) , (5.27)

which is equivalent to the use of the pseudovector (derivative) form written in the

main text if each fermion line is attached to at most one axion line (97). Given the

two Feynman diagrams in figure 5.A.1, the matrix elements are

iM(1) = ±e2gaeµ

[
u′
1γ

µ−/r +m′
1

r2 +m′
1
2γ5u1

] −gµν
k2

[u′
2γ

νu2] , (5.28)

iM(2) = ±e2gaeµ

[
u′
1γ5

−/s +m1

s2 +m2
1

γµu1

] −gµν
k2

[u′
2γ

νu2] , (5.29)
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Figure 5.A.1 : Feynman diagrams for the LFV process l + f → l′ + f + a. If f is a

lepton, there occur two more graphs which can be obtained by exchanging (1 ↔ 2)

for f being identical to l or (1′ ↔ 2′) for f being identical to l′.

where k ≡ p2 − p′2, r ≡ p1 − p′3, s ≡ p′1 + p′3 and ± refers to the sign of the spectator

particle’s electric charge. In NSs we have |m2
1−m′

1
2| ≈ m2

µ ≫ EFE
′
3, thus r2+m′

1
2 ≈

−m2
1 +m′

1
2 and s2 +m2

1 ≈ −m′
1
2 +m2

1. The matrix element for exchange diagrams

can be obtained by (1 ↔ 2) or (1′ ↔ 2′), with an additional factor of −1 included.

The spin-summed squared matrix element is

∑

spin

∣∣M(lp)
∣∣2 = − 128g2aeµe

4

(p2 − p′2)
4

(p1 · p′1 +m1m
′
1)(p2 · p′3)(p′2 · p′3)

(m2
1 −m′

1
2)2

, (5.30)

∑

spin

∣∣M(ll)
∣∣2 =

∑

spin

∣∣M(lp)
∣∣2 + (1 ↔ 2) + T (ll) , (5.31)

∑

spin

∣∣∣M(ll′)
∣∣∣
2

=
∑

spin

∣∣M(lp)
∣∣2 + (1′ ↔ 2′) + T (ll′) , (5.32)

where l = e, µ and l′ = µ, e. The second term in (5.31) and (5.32) is the contribution

solely from the exchange diagrams given by the first term but with (1 ↔ 2). The

third term in (5.31) is the interference between prototype and exchange diagrams

given by

T (ll) =
64g2aeµe

4

(p1 − p′2)
2(p2 − p′2)

2

p′2 · p′3
(m2

1 −m′
1
2)2

× [(p2 · p′1 +m1m
′
1)(p1 · p′3) + (p1 · p′1 +m1m

′
1)(p2 · p′3)− (p1 · p2 +m2

1)(p
′
1 · p′3)] ,
(5.33)

and T (ll′) in (5.32) by T (ll) but with (1 ↔ 1′) and (2 ↔ 2′). Here we evaluate the
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traces of products of gamma matrices and spinors with the help of the Mathematica

package FeynCalc (98).

At the Fermi surface, the spin-summed squared matrix element becomes

∑

spin

∣∣M(lf)
∣∣2
Fermi

=
32e4g2aeµE

′
3
2

E2
F,1E

2
F,2β

4
2(β

2
1 − β′

1
2)2

G(lf) , (5.34)

where f = p, e, µ. The G(lf) factor is found to be

G(lp) =
(1− βF,2c23′)(1− βF,2c2′3′)(1− βF,1βF,1′c11′)

(1− c22′)2
, (5.35)

G(ll) = G(lp) + (1 ↔ 2) +H(ll) , (5.36)

G(ll′) = G(lp) + (1′ ↔ 2′) +H(ll′) , (5.37)

where we have assumed that electrons are ultra relativistic so βF,e = 1. The second

term in (5.36) and (5.37) is the contribution solely from the exchange diagrams given

by the first term but with (1 ↔ 2). The third term in (5.36) is the interference

between prototype and exchange diagrams given by

H(ll) =
(1− βF,1c2′3′)

2(1− c12′)(1− c22′)
[βF,1

(
c13′ + c23′ + βF,1(1− c12) + βF,1′(c11′ + c21′)

+ βF,1βF,1′(c12c1′3′ − c11′c23′ − c13′c21′ − c1′3′)
)
− 2] ,

(5.38)

and H(ll′) in (5.37) by H(ll) but with (1 ↔ 1′) and (2 ↔ 2′).

5.A.4 Axion emissivity

In summary, the axion emissivity is given by

ε(lf)a =
328π2α2g2aeµ

945m4
µ

βF,1E
3
F,1

β2
F,2p

2
F,2

F (lf)T 8 , (5.39)

F (lf) ≡ 1

8S

∫ c+12

c−12

dc12

∫ c+
11′

c−
11′

dc11′

∫ 1

−1

dc13′
⟨G(lf)⟩φ13′ ,vφ=vφ,0√

(1− c211′)(1− c212)(1− cos2 vφ,0)
. (5.40)

The dc13′ integral can be evaluated analytically. We calculate the other integrals

using numerical techniques and present the result for F (lf) in figure 5.A.2. In the left
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Figure 5.A.2 : The factor F (lf) as a function of the Fermi velocity of muons (left)

and protons (right). Here we have set βF,p = 0.3 and βF,µ = 0.8 for the left and right

panels respectively for the f = p processes.

panel we vary the muon Fermi velocity βF,µ = pF,µ/EF,µ. From the right panel we see

that F (lp) is not sensitive to βF,p if protons are nonrelativistic, i.e., βF,p ≲ 0.5, which

is expected in NSs. Therefore, we use the values of F (lf) shown in the left panel to

calculate the emissivity shown in the main text.

5.A.5 Different temperature dependence from LFV and LFP interactions

In the main text we contrast the temperature dependence of the axion emissivity

for LFV and LFP interactions. The LFP interaction leads to axion emission via
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channels such as l + f → l + f + a with an emissivity that scales as εa ∝ T 6 (similar

for nn → nna (24)). By considering the LFV interaction here, we find that channels

such as l + f → l′ + f + a lead to an emissivity εa ∝ T 8 instead. This different

scaling may be understood by inspecting the form of the matrix element. Consider

the Feynman diagram in the left panel of figure 5.A.1. The fermion propagator and

the axion vertex contribute factors of

E ′
3

(p1 − p′3)
2 +m′ 2

1

=
E ′

3

m′ 2
1 −m2

1 + 2E ′
3(E1 − 2|p1|c13′)

, (5.41)

in the (−,+,+,+) metric signature and neglecting the axion mass E ′
3 = |p′

3|. The

axion energy E ′
3 in the numerator arises from the derivative nature of the axion

interaction. The temperature dependence enters via the typical axion energy, E ′
3 ∼ T .

For LFP channels such as µp → µpa, we have m′
1 = m1, the E ′

3 ∼ T factor in the

numerator is canceled by the factor in the denominator, and consequently the squared

matrix element is insensitive to the temperature. On the other hand, for the LFV

channels, the m′ 2
1 −m2

1 term dominates in the denominator. Consequently, the LFV

axion emissivity is suppressed relative to the LFP calculation by a factor of order

T 2E2
F,e/(m

2
µ −m2

e)
2 ∼ T 2/m2

µ ∼ 7× 10−7T 2
9 .

5.B The npeµ matter

At typical NS densities ∼ 1015 g cm−3, the equilibrium composition involves neu-

trons, protons, electrons, muons and other exotic matter states such as hyperons.

Neglecting the exotic matter, equations of state for a NS are relatively easy to calcu-

late (99). Thermal equilibrium and conservation of the baryon number and electric

charge impose (63)

EF,µ = EF,e , EF,n = EF,p + EF,e , np = ne + nµ , (5.42)

where we have approximated the chemical potential with the Fermi energy. We also

have the Fermi energy E2
F,i = m2

i + p2F,i, the number density ni = p3F,i/3π
2, and the
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mass density ρ =
∑

i mini. If one of ρ, nn, np, ne, nµ is fixed, the other quantities can

be fully determined. For this work, we have taken 0.8mN ≈ 750MeV for the mass of

nucleons to account for their nuclear interactions. At ρ = 6ρ0 ≈ 1.5 × 1015 g cm−3,

we find

pF,n ≃ 624MeV , pF,p ≃ 226MeV , pF,e ≃ 193MeV , pF,µ ≃ 162MeV , (5.43)

corresponding to βF,p ≃ 0.29 and βF,µ ≃ 0.84.

5.C Numerical integration

5.C.1 Numerical integrator

In this section we discuss the numerical method used to evaluate (5.11). To prepare

the integrand for numerical integration we simplify it by using the Dirac deltas to

perform 4 integrals analytically. We use the momentum conserving Dirac delta to

carry out the d3p′2 integrals which enforces p′
2 = p1 + p2 − p′

1 − p′
3. Next, we rewrite

the momentum integrals in spherical coordinates by making the replacements d3p →
|p|2 d|p| d cos θ dϕ where θ and ϕ give the polar and azimuthal angles of p in the

rest frame of the NS. The coordinate system is oriented so that the z-axis points in

the same direction as p′
3 so that the d cos θ′3 dϕ

′
3 integral yields a trivial factor of 4π.

We then change variables from momentum magnitudes |p| to energies by using the

relation E2 = |p|2 +m2 to write E dE = |p| d|p|. Finally, the energy Dirac delta is

used to fix |p′
3| so that, assuming the axion is massless (m′

3 = 0),

E1 + E2 − E ′
1 − E ′

2 − E ′
3 = E1 + E2 − E ′

1 −
√

|p1 + p2 − p′
1 − p′

3|2 +m′2
2 − |p′

3|

= E1 + E2 − E ′
1 −

√
|P |2 − 2Pz |p′

3|+ |p′
3|2 +m′2

2 − |p′
3| = 0

(5.44)

where P ≡ p1+p2−p′
1−p′

3. This adds a factor of |1+(|p′
3|−Pz)/E2|−1 to the integrand

since δ[f(x)] = δ(x − x∗)/|f ′(x∗)| where x∗ is the root of f(x). In practice, (5.44) is

enforced by using Newton-Raphson iteration to find the value of |p′
3| which is a root of
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this equation when the integration variables E1, E2, E
′
1, cos θ1, cos θ2, cos θ

′
1, ϕ1, ϕ2,

and ϕ′
1 are fixed. All together, this rewrites the integral (5.11) as

ε(lf)a =
4π

25(2π)11
1

S

∫
dE1 d cos θ1 dϕ1 dE2 d cos θ2 dϕ2 dE

′
1 d cos θ

′
1 dϕ

′
1

× |p1||p2||p′
1||p′

3|
E ′

2

∣∣1 + (E ′
3 − Pz)/E ′

2

∣∣
∑

spin

∣∣M(lf)
∣∣2E ′

3 f1 f2 (1− f ′
1) (1− f ′

2) ,

(5.45)

where the matrix element is given by (5.30 - 5.32). We evaluate the integral in this

form using the Vegas package in Python which performs Monte Carlo integration us-

ing two adaptive strategies: importance sampling, and stratified sampling, to improve

convergence (100). We choose to use this Monte Carlo integrator because of its flexi-

bility and ease of use. The integral is evaluated by passing the integrand as an explicit

function of the 9 integration variables (E1, E2, E
′
1, cos θ1, cos θ2, cos θ

′
1, ϕ1, ϕ2, ϕ

′
1) to an

instance of the vegas.Integrator class. We split the calculation of the integral into

two steps. First, we adapt the vegas.Integrator object to the integrand by calling it

with the parameters nitn = 10, neval = 5×107, and alpha = 0.1. These parameters

control the number of iterations used to adapt the integrator; the number of points

on the integration domain where the integrand is evaluated; and the sensitivity of the

adaptation algorithms, respectively. We then discard the results obtained from the

first run but keep the adapted integrator and call it again with the same parameter

choices except with alpha = 0 so that there is no further adaptation. The value of

the integral and the errors we report below are taken as the mean and sdev attributes

of the second run vegas.Integrator object. The mean is a weighted average of the

results of each of the nitn = 10 iterations of the Vegas algorithm, where the weights

are the inverse variance in each iteration. The uncertainty, sdev is the square root

of the variance of the weighted average assuming the sample average in each itera-

tion is approximately normally distributed – this is a good approximation if neval is

sufficiently large.

In principle the energy integrals over E1, E2, E ′
1 should be over the domain Ei ∈
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Figure 5.C.1 : Axion emissivity for the ep → µpa channel vs energy integration

domain Ei ∈ [EF,i − nT, EF,i + nT ] parameterized by n. The gray dashed line is the

constant 1.85× 1010 erg cm−3 s−1, which is the value to which the integral converges.

For these calculations we have fixed βF,µ = 0.836788, gaeµ = 10−11, and T = 109K.

As n increases, the value of the emissivity integral converges to a constant value of

≈ 1.8× 1010 erg cm−3 s−1 .

[mi,∞) but in practice we can only integrate over a finite window. The thermal factors

in (5.45) provide support only in a window around the Fermi level EF =
√
p2F +m2

whose width is of order ∼ T . This motivates integrating E1, E2, E ′
1 over the finite

window Ei ∈ [max(mi, EF,i − nT ), EF,i + nT ] with a value of n sufficiently large that

the integral is insensitive to its exact value. We find n = 10 to be large enough that

the integral is independent of n, but small enough that Monte Carlo convergence is

not too slow. The n-independence is demonstrated for the process ep → µpa for

βF,µ = 0.84, T = 109 K and ma = 0 in figure 5.C.1. Note how as n increases, the

emissivity approaches a constant value of approximately 1.8 × 1010 erg cm−3 s−1,

which corresponds to the blue data point at βF,µ ≈ 0.84 in figure 5.C.2.

5.C.2 Numerical validation of Fermi surface approximation

The results of our numerical evaluations of (5.45) for the various axion emission

channels are shown in figure 5.C.2. The numerical results (dots and squares) agree
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Figure 5.C.2 : Axion emissivity computed using the Monte Carlo integration method

(dots and squares) vs. Fermi surface approximation (lines). The results agree well

for βF,µ ≳ 0.1 and the agreement is good within about 10% at βF,µ ≈ 0.8. At small

βF,µ ≲ 0.1, the Fermi surface approximation underestimates the emissivity for the µp,

µe channels and overestimates it for the ep and ee channels. To make this plot, we

choose gaeµ = 10−11 and T = 109 K to be consistent with the parameters in figure 2

of the main text.
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very well with the analytical results (lines) for a wide range of βF,µ. For small βF,µ

the numerical results tend to diverge from the analytical results, which is expected

because in this regime the number density of muons is small, which means that the

degenerate matter approximation breaks down. In addition, we observe that for

βF,µ ≳ 0.1 the emissivities are paired by channel such that ε
(lf)
a ≈ ε

(l′f)
a . This is

a consequence of the strong particle degeneracy and the beta equilibrium condition

EF,e ≈ EF,µ. We have verified this numerically and analytically by imposing the

relation EF,e = EF,µ + ∆ and observing that the difference between emissivities for

the channels ef → µfa and µf → efa grows with ∆ but is only significant if ∆ ≳ T .

For ∆ > 0 the electron’s Fermi energy is larger than the muon’s which allows for

electrons with energies below the Fermi level to also convert into muons, enhancing the

emissivity of this channel. Conversely, for muon to electron conversion, the emissivity

is exponentially suppressed since the muons’ energies are below the electrons’ energies.

5.C.3 Effect of temperature on axion emissivity

In addition to verifying that numerically evaluating the axion emissivity at T =

109 K agrees with the analytical approximation, we also numerically computed the

axion emissivity as a function of temperature while fixing βF,µ = 0.836788 and ma =

0. We are motivated to do this for two reasons. The first is to confirm the T 8

scaling of the emissivity at low temperatures, i.e. equation (5.39). The second is

to calculate the emissivity for larger temperatures such as T ∼ 50 MeV, the scale of

supernovae; allowing us to comment on constraints imposed on axion LFV interactions

by supernovae observations.

In degenerate NS matter, there is a screening of electromagnetic fields due to the

presence of a degenerate plasma with charged constituents. To estimate this effect,

we replace the photon propagator k−2 in the matrix element by (k2 + k2
TF)

−1 (101),

where k2
TF =

∑
i 4αpF,iEF,i/π is the Thomas-Fermi screening scale which receives

contributions from electrons, muons and protons. Noting that k2 ∼ (pF,e − pF,µ)
2 ∼
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E2
F,e(1 − βF,µ)

2 at low temperatures, the screening effect is insignificant if βF,µ ≲

1 − kTF/EF,e, which becomes βF,µ ≲ 0.75 at the core condition given by (5.43).

Therefore, for mildly relativistic muons with βF,µ ∼ 0.8, the emissivity of LFV axions

without including the screening effect is subject to O(1) corrections. On the other

hand, incorporating the screening effect in axion emissivities is important at high

temperatures since k2
TF dominates over k2, especially near the pole k2 = 0.

The temperature dependence of the axion emissivity is presented in figure 5.C.3

for 10−3 MeV ≤ T ≤ 100 MeV. Since we expect the emissivity to scale as ε(lf) ∝ T 8

for low temperatures we normalize the emissivity by T 8 so that a T 8 scaling would be

a constant line in this figure. The figure displays several interesting features. (1) At

temperatures below T ∼ 10 MeV, the emissivity is seen to scale like ε(lf) ∝ T 8 (up to

O(1) factors), which confirms the prediction from the Fermi surface approximation.

(2) The emissivity tends to decrease relative to T 8 for all six channels at temperatures

T ≳ 10MeV. (3) For lower temperatures, the emissivities are paired by channel such

that ε
(lf)
a ≈ ε

(l′f)
a ; however, at higher temperatures these relations do not hold. This

is expected since the Fermi surface approximation, one of the assumptions needed to

show that ε
(lf)
a and ε

(l′f)
a coincide, breaks down in this regime. The significance of

T = 10MeV can be understood as follows: at low temperatures the thermal factors

lead to a strong suppression of the integrand away from the Fermi surface. As we lift

the temperature the accessible phase space broadens and the pole becomes significant.

5.C.4 Effect of axion mass on emissivity

In previous results we assumed axions were massless. Here, we use our numerical

integration method to explore the effect of raising the axion mass on the emissivity.

To do this we must modify (5.44) to accommodate a massive axion by replacing

E ′
3 = |p′

3| with E ′
3 =

√
|p′

3|2 +m2
a so that energy conservation imposes the following

constraint on |p′
3|,

E1 + E2 − E ′
1 −

√
|P |2 − 2Pz |p′

3|+ |p′
3|2 +m′2

2 −
√
|p′

3|2 +m2
a = 0 . (5.46)
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Figure 5.C.3 : Numerically evaluated axion emissivity vs. temperature, calculated

using (5.45) with matrix elements given by (5.30 - 5.32). To generate these data we

fixed βF,µ = 0.836788, ma = 0, and gaeµ = 10−11. The data presented here were

computed with neval = 5× 107. The error bars are typically between 100 to 10,000

times smaller the mean values.

Figure 5.C.4 : Numerically evaluated axion emissivity vs. axion mass, calculated

using (5.45) with matrix elements given by (5.30 - 5.32). To generate these data we

fixed βF,µ = 0.836788, T = 109 K, and gaeµ = 10−11. For large masses the emissivity

falls off with an exponential tail (compare with black dashed line). The data presented

here were computed with neval = 106.
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In principle, we must also account for the axion’s mass in the matrix element since

(5.30)–(5.32) were derived assuming ma = 0. However, we argue that the most impor-

tant contribution of the mass to the emissivity is an exponential suppression arising

from the thermal factors and therefore report results obtained using the ‘massless’

matrix element of (5.30 - 5.32). We set the temperature T to a fiducial value of 109 K

and fix βF,µ = 0.836788 and calculate the emissivity for a range of masses satisfying

0 ≤ ma/T ≤ 50. The emissivities calculated are presented in figure 5.C.4. We find

that the emissivity is approximately constant for ma/T ≤ 10, after which point the

emissivity is exponentially suppressed.
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Chapter 6

Conclusions

Through the work presented in this thesis I have developed and implemented pipelines

that placed limits on axion parameters using measurements of CMB birefringence

and neutron star cooling. In chapters 2-4 I considered the possibility that long-lived

cosmic strings in ALP fields could impart a rotation of the plane of polarization of

CMB photons, an effect known as CMB birefringence.

In chapter 2 I obtained limits on axion parameters in a phenomenological model

called the loop-crossing model (LCM) by performing Bayesian inference on published

CMB birefringence power spectrum data. I found that the birefringence power spec-

trum is constrained by current probes to be less A2ξ0 < 3.7 (95% CL). This limit is

intriguing because, for reasonable values of the parameters (A ∼ O(1), ξ0 = 0.3−30),

the amplitude can be around this value. With future CMB probes expected to im-

prove over current polarization measurements by orders of magnitude, we have the

exciting prospect that next generation CMB data can access a compelling parameter

in cosmic axion string models.

In chapter 3 I explored how non-Gaussian statistics can be used to resolve a limi-

tation of power spectrum-based analyses. Specifically, the power spectrum is directly

proportional to the combination of parameters A2ξ0, which means that the power

spectrum does not contain information that could allow one to independently mea-

sure A and ξ0. I showed that axion-string induced birefringence maps exhibit positive

kurtosis in their spherical harmonic coefficients and derived an analytic formula which

successfully describes the qualitative feature of the excess kurtosis as a function of

multipole. One of the takeaways from this project was that kurtosis poses a challeng-
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ing way to look for a signal of axion strings in real CMB birefringence maps. Therefore

it is advantageous to look for statistics with more concentrated information.

Pursuing this direction of inquiry further, in chapter 4 I studied how convolutional

neural networks could be trained to extract information about LCM parameters. In

particular, I trained three spherical convolutional neural networks (SCNNs) to learn

the combination of parameters Z = log10 ζ0, A = log10(A2ξ0), and X = log10(ξ
2
0/A).

Based on several tests of their accuracy and precision, we conclude that the SCNNs

that learned log10(A2ξ0) and log10(ξ
2
0/A) are able to furnish reliable estimators of

these parameters when provided with noiseless birefringence maps generated from

LCM simulations.

In chapter 5 I studied how neutron star cooling curves can be used to look for

evidence of axions by considering a theory where lepton-flavour violating LFV inter-

actions enable electrons colliding with a nucleon to produce a muon and an axion.

The emitted axions would carry energy away from the neutron star, slightly increas-

ing the cooling rate. The absence of an anomalously fast cooling rate in neutron star

observations allowed us to put a limit |gaeµ| ≲ 4×10−11 on the LFV coupling constant

gaeµ.

To conclude, there are several avenues for advancing the study of cosmic axion

strings and their imprint on CMB birefringence. A straightforward next step is to

extend the loop-crossing model (LCM) to incorporate additional features revealed by

full 3D cosmic string simulations, such as the non-circular geometry of loops, the

distribution of loop radii at a given redshift, and other nuances that are currently

simplified. This would make the simulations more realistic and provide a more robust

foundation for inference.

A critical step toward improving inference pipelines is addressing the limitations

of neural networks trained on LCM-based simulations. While these networks effec-

tively infer parameters as point estimators, there is a concern that they may have

learned features specific to the LCM, such as the circular geometry of strings. To
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mitigate this, neural networks could be trained on simulations that account for per-

turbations in string geometry or other features from 3D simulations, ensuring that the

inferred parameters are robust to these complexities. Additionally, instead of directly

inferring parameters, future pipelines could train networks to learn summary statis-

tics that maximize the Fisher information about the parameters, which would allow

for unbiased point estimators or simulation-based inference using these compressed

datasets.

Ultimately, a key way to unify these efforts would be through full ray-tracing sim-

ulations of CMB photons propagating through realistic cosmic string networks. These

simulations would capture a wide range of features, including birefringence, lensing,

and non-trivial string geometries, providing training data that bridges the gap be-

tween simplified models and observational data. By integrating these improvements,

we can build more robust inference pipelines, paving the way for reliable analysis of

next-generation CMB data and maximizing our potential to discover axion strings in

the cosmos.
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